
1 Retrospective of the week

1.1 Trocq as setoid rewrite

We explored how pattern selection mechanism could be extended so as to allow
users to provide a minimal information about the shape of the context to be
inferred. Typically, one would like Rocq to deal automatically with potential
dependencies, and abstract as many subterms as needed for the context to be
well-typed, but not more. Then, more relations than the one specified by the
users might be needed to construct the witness and these have to be found
among the registered ones/ provided. [attempt to rewrite the prev sentence] In
this case the user may need to specify more relations in order to construct the
witness (these additional relations are not among the globally registered ones).

1.1.1 Example:

rewriting
e : N ≃ N ′, 0R : e 0 0′, SR : (e ⇒ e)SS′

in
∀(P : N → Type), P0 → (∀n, Pn → P (S n)),∀n : N,P n

We may be able to write either of rewrite e or rewrite 0 R. Pattern se-
lection should be able to abstract at the same time N , 0 and S, in both cases.

• for rewrite e the inferred pattern is (λX.∀(P : X → Type), P0 → (∀n :
X,Pn → P (Sn)),∀n : X,Pn) but since it does not typecheck (eg P0 is
illtyped), the pattern selection should also abstract on 0 and S

• for rewrite 0 the inferred pattern is (λx : N.∀(P : N → Type), Px →
(∀n : N,Pn → P (Sn)),∀n : N,Pn), it does typecheck, but it has type
N → Prop and cannot be applied to 0′: the pattern typechecks but is
not suitable for heterogenous replacement. The pattern selection should
abstract on N and thus on S.

A correct inferred pattern could be (and it is not unique):

(λX : Type, λx : X,λy : X → X.∀(P : X → Type), Px → (∀n : X,Pn → P (y n)),∀n : X,Pn

1.1.2 Objective:

1. Given a goal G, and a set of relations pi : ri ti t
′
i to rewrite with, we need

to find a well typed context P : TP such that P t1 · · · tn unifies with G,
such that P t′1 · · · t′n is also well typed.

2. Use Trocq (using solely identity translations) to get PR : [[TP ]]
(0,1)PP so

that PR t1 t′1 p1 · · · tn t′n pn is a proof of the desired implication:

P t′1 · · · t′n → G

1



1.1.3 Observations:

This framework involves three natures of relateness witnesses: - relating terms
with their identity/parametricity/white box translations (the translations ob-
tained by parametricity), e.g., PR - the morphisms/black box translations,
i.e. given a pair of types and a relation between them, constructions in one
type have a default translation in the other e.g. 0R and SR. It should be
guided by the relation we rewrite with. (e.g 0′R : e′00′ is not a valid witness) -
user given translations at rewrite time, which are abitrary and non inferrable.
e.g. e : N ≃ N ′.

1.1.4 Questions:

• In general, P will not be obtained after the sole abstraction of (prescribed
occurrences of) the left hand-side of the relation provided by the user (e).
There should then be a backtracking process for computing a suitable P .
What level of vagueness do we want to allow?

• More abstractions mean more relation witnesses, how to make sure Trocq
finds them.

1.1.5 Roadmap:

Track 1.

1. fully explicit context

2. fully explicit patterns (one pattern for each lambda)

3. use second order pattern matching to find a minimal context given a set
of terms to abstract

4. giving only a subset of the terms to abstract

5. do not give a pattern, piggyback on 4. using the inferred one.

Track 2. Use rewritestrat: - rewritestrat should compute the expected level
from the context.

Track 3. Add subrelations to Trocq

1.2 Quentin’s PR and Iris bug

With the help of Gaetan we observe that the failure in Iris is that a goal previ-
ously kept in the shelf is now presented as a goal to be immediately solved.

We discover that instantiation of an evar with another (pruned) evar preserves
some flags attached to the evar being assigned (like being on the “shelf”, or being
a “future goal”). The code in evd.ml has a inherit flags internal function to

2



partially do this job. Although the flags do need to be preserved, the shelf and
the flags are independent.

The PR by Quentin implements pruning of evars applied to terms, so now
the code path is evar assigned to a beta redex (the redex drops the arguments
to be pruned). In this case flags are not inherited by the restricted evar is not
put on the shelf.

We add an API to restrict an evar via a beta redex that calls inherit flags.
Preserving the shelf flag did not help in the specific case.
TODO: correctly set the future goal flag. This is not a regular flag, but rather

a data structure in the evar map that is used by lower layers to communicate
to the proof monad which evars represent the new sub goals. I guess we have
to make sure that we don’t add the new pruned evar in that list by mistake
(unless the old evar was there in the first place). adding the evar in the shelf in
evardefine.ml/define pure evar as lambda breaks things, we need to debug
it.

1.3 Unification up to structure inheritance graph

Quentin explained the optimization known as “save keys”, the same that was
presented at the Liberabaci midterm meeting.

We observe that some diagrammatic reasoning that seems trivial on the
inheritance graph is implemented by intertwined reduction steps and calls to
the CS table.

Cyril and Enrico try to detail an algorithm where coercions are elided and
we reason on terms of different types but keeping some information on the side
to finally reconstruct well typed terms. The result that emerges from carrying
out a few examples is that it is not trivial, and seems anyway just pointing to
the separation of bare unification from reasoning on the inheritance graph.

unif/CS problems of the form proj1 .. = proj2 .. can be solved by walk-
ing the graph (of coercions, but only the coercions that represent inheritance
paths). It existed in Matita and is also implemented for reverse coercions: it
is the computation of the pullback between proj1 and proj2. The same walk
is implemented today by a number of entries in CS table (typically synthesized
by HB). These entries represent the ahead-of-time solutions to all possible pul-
back computations. So the lookup is fast, the table huge, unifying the solution
with the .. may be expensive and this is also what Quentin’s PR tries to solve.
Walking a non-transitively-closed graph can be more expensive (without a cache
morally of the size of the CS table, eg quadratic1). But applying the solution
can be done in a smarter way, eg proj1 (proj2 t) = proj3 u finds a solution
for t and u, while the current algorithm finds one to be checked against proj2
t and that may require more unification work to finally assign t as desired.

Quentin and Erico don’t think there is an immediate speedup as initially
conjectured by Cyril. Enrico, Cyril, Assia, Quentin and Matthieu think that
the unification algorithm is simpler to explain by separating the just-unification

1Cyril has an idea on how to make the cache linear.

3



part from the just-inheritance part. This might also help amending deep layers
of a hierarchy.

Roadmap:

• tag coercions that are inheritance paths

• desgin the unif

• try to patch evar conv ˆˆ

1.4 Evars in evarconv

1.4.1 Folding before solving evars

If the algorithm unfolds terms and then finds that one side is an evar, it does
not fold the other side back to its original state.

Doing it might have a nice side-effect on the usual refolding issue for fixpoints
(hopefully).

1.4.2 Stop heuristically solving hard higher order unification prob-
lems unless specifically asked to

Full higher order unification is undecidable, things break easily as soon as we
encounter such problems. We would like to stop solving them and let the user
give the instantiation she wants. There are several ways to do that: - Fail and
tell the user which evars were involved in the unification problem (as in which
implicit arguments produced the evars) as an error message. - Open a specific
goal for the unification problem, where the user can intervene. We could give
the unification problem: - as an equality that needs to be solved by eq refl -
as an equality hidden under some existential quantifiers (one for each evar) -
as a new relation without constructor that the user can not do anything about
except instantiating the evars and calling “reflexivity”/done/over/. . . - as
shelved evars by showing the unification constraints

Matthieu already did something around this: see Unset Solve Unification

Constraints.

4


