
jsCoq 2.0:
Towards Rich Formal Documents

Emilio J. Gallego Arias & Shachar Itzhaky
(Picube – IRIF, Univ. Paris, Inria Paris)

LiberAbaci, Oct 18th 2024

From mathematical text to formal documents

(Figure credit: G. Gonthier)

From mathematical text to formal documents

jsCoq: history

jsCoq’s birth wasn’t planned!

● 2013: Teaching assistant at UPenn, Software Foundations
● 2015: Send to Coq to js_of_ocaml (joke) but it worked!
● 2015: First version thanks to first CUDW (P. Jouvelot)
● 2015: Benoit Pin develops first interface
● 2015: Prime numbers example + packages
● 2016: SerAPI, improved protocol (C. Pit-Claudel)
● 2019: Shachar: worker, WASM, packs, company, print, node…

Very opinionated project from the start

jsCoq: original design philosophy

Interactive Literate Programming and Proving

Document at the center:
Start from existing document, instrument with Coq

Lightweight:
Keep it simple, maintainable, standards-based

Server-less:
Servers disappear, self-contained stays

jsCoq: demos

● https://www.youtube.com/watch?v=COukSOE5utA
● https://www.youtube.com/watch?v=IFCGzBDTpCo
● https://eloquentjavascript.net/11_async.html
● First talk(s)
● https://coq.vercel.app/
● https://github.com/jscoq/jscoq/#examples

https://www.youtube.com/watch?v=COukSOE5utA
https://www.youtube.com/watch?v=IFCGzBDTpCo
https://eloquentjavascript.net/11_async.html
https://coq.vercel.app/
https://github.com/jscoq/jscoq/?tab=readme-ov-file#examples

jsCoq “1.0” architecture: frontend

Coq manager:
Coordinates events coming from HTML page and Coq

Layout manager:
Controls the jsCoq panel

Package manager:
Manages package loading

CodeMirror Provider:
Presents a set of CM5 editors as single document

The CM provider parses the Coq document and submit
sentences to Coq; goals are displayed on request

jsCoq “1.0” protocol
type jscoq_cmd =
 | InfoPkg of string * string list
 | LoadPkg of string * string
 | Init of jscoq_options
 | NewDoc of doc_options
 | Add of Stateid.t * Stateid.t * …
 | Cancel of Stateid.t
 | Exec of Stateid.t
 | Query of Stateid.t * route_id * query
 | Ast of Stateid.t
 | Register of string
 | Put of string * string
 | GetOpt of string list
 | InterruptSetup of opaque
 | ReassureLoadPath of lib_path
 | Load of string
 | Compile of string

type jscoq_answer =
 | CoqInfo of string
 | Ready of Stateid.t
 | Added of Stateid.t * Loc.t option
 | Pending of Stateid.t * string list * string list
 | Cancelled of Stateid.t list
 | ModeInfo of Stateid.t * in_mode
 | GoalInfo of Stateid.t * Pp.t reified_goal option
 | Ast of Vernacexpr.vernac_control option
 | CoqOpt of string list * Goptions.option_value
 | Log of Feedback.level * Pp.t
 | Feedback of Feedback.feedback
 | SearchResults of route_id * Qualified_name.t Seq.t
 | Loaded of string * Stateid.t
 | Compiled of string
 | CoqExn of { loc : Loc.t option … }
 | JsonExn of string

jsCoq “1.0”: success and limitations

jsCoq proved popular!

● success: working reasonably well, real-world proofs
● success: many cool features! (auto-load, collab, inspect)
● success: serverless approach passed the test of time

● limitation: Document model and editor support
● limitation: Coq API / STM
● limitation: Class preparation workflow
● limitation: maintenance / complexity

jsCoq “2.0” and Flèche

● Context: looking at the problem since 2016
● Motivation: late 2021, SF / CoREACT / Waterproof / others
● Goal: New use cases & fix many existing problems
● How: Flèche / coq-lsp (long time wish, long time research)
● Improvements:

○ Maintainability: Flèche is simple, sound, and extensible
○ Modularity, unification: Reusable components, several editors
○ New features: full-project, native hybrid, incremental, declarative

● jsCoq 2.0: platform for research,
 education, and experimentation

jsCoq “2.0”: Main novelties and changes

● Frontend: ported to typescript, greatly simplified
● Frontend: support several editors

● Backend: custom -> LSP + a few extensions
● Backend: built by coq-lsp CI

● General: native hybrid document / theory model
● General: large improvements on infra, CI
● General: improvement on client/server FS model

Flèche: Maintenance, Extensibility

● Stable core engine (0 open core bugs)
● Most problems or features: prototypes / workarounds exist

● CoREACT graph editor (A. Lafont)
● CoqPilot (A. Kozyrev, A. Podkopaev)
● ViXZ Visualizer (B. Shah)
● Waterproof (J. Portergies, Waterproof team)
● petanque (G. Baudart)
● jsCoq 2 (S. Itzhaky)
● ERooster (S. Itzhakty, E. Singer)
● Coq-universe (A. Caglayan)
● Python, VIM, Emacs, clients (several contributors)

Flèche: interaction modes

Document Updates

● Flèche scans the workspace for
proof documents and config

● Users / editors just relay
changes on the documents

● Flèche decides what to do on
those, maybe nothing!

● No more need for a build system

Document Queries

● Document-level positions
constitute ground-truth

● User can query for specific
objects in a set of documents

● Then Flèche will decide how to
return these objects ASAP

● That’s the base for the
upcoming plugin interface

Document interaction as a build system at the core of the philosophy

Do we need jsCoq anymore?

● github.dev demo

● Flèche unifies all the platforms
● All you need now is to drop a git repos into Flèche
● VSCode custom editors: jsCoq becomes really minimal
● Exploring this question with WaterProof devs

jsCoq “2.0”: protocol extensions

● https://github.com/jscoq/jscoq/issues/377

● Range-based offsets (LSP?)
● Package management
● Interruption setup (LSP?)
● Virtual FS (planned for LSP)

https://github.com/jscoq/jscoq/issues/377

jsCoq “2.0”: virtual FS

Editors
(vsCode, CM, PM)

Documents

Coq-lsp Web
Worker

Documents

LSP/jsCoq

Editors and Workers
have different FS view

jsCoq “2.0”: editors

● Demo of CodeMirror, ProseMirror, Curvenote

jsCoq “2.0”: addons / packages

● As of today we distribute packages in a zip file
● Not clear how to best organize this
● We require some extra metadata to implement auto-require

jsCoq “2.0”: TODO

● Coq patches: help would be nice
● 64-bit build: 32-bit builds are going away
● Package manager: need to figure out a robust solution
● Web development: interface to expose the FS properly
● Documentation: seems that this needs a lot of improvement
● Packaging: to npm, other forms?
● OCaml + WASM: exploring upstream integration

Lots more ideas!

Discussion Time

Thanks!

