jsCoq 2.0:
Towards Rich Formal Documents

Emilio J. Gallego Arias & Shachar Itzhaky

(Picube — IRIF, Univ. Paris, Inria Paris)
LiberAbaci, Oct 18th 2024

From mathematical text to formal documents

Theorem 14.7. Suppose M € .#» and K is a Hall k(M)-subgroup of M.
Let K* = Cp, (K), k = |K|, k* = |K*|, Z = KxK*,and Z = Z—(KUK*).
Then, for some other M* € .#» not conjugate to M,
(a) #(Ca(X)) = {M*} for every X € £}(K),
(b) K* is a Hall (M*)-subgroup of M* and a Hall o(M)-subgroup of
M*, M¥) = K (1%
(c) K =Cp+(K*) and k(M) = 11(M),
(d) Z is cyclic and for every z € K¥ and y € K**, MO M* = Z =
Cm(z) = Cm-(y) = Ca(zy), R R
(e) Z is a TI-subset of G with Ng(Z) = Z, Z n M9 empty for all
g€ G- M, and

5 1 1 1 1
|¢6(2)| = (1 i et W) G| > SIGl,
(f) M or M* lies in #», and, accordingly, K or K* has prime order,
(g) every H € #o is conjugate to M or M* in G, and
(h) M'isa com?l\ement of K in M.

Nsrme

(Figure credit:

Theorem Ptype_embedding M K :
M \in 'M_'P -> \kappa(M).-Hall(M) K ->
exists2 Mstar, Mstar \in ‘M_'P /\ gval Mstar \notin M :*: G
& let Kstar := 'C_(M" _\sigma)(K) in
let Z := K <*> Kstar in let Zhat := Z :\: (K :|: Kstar) in
[/\ (*a*) {in 'E"1(K), forall X, '"M('C(X)) = [set Mstar]},
(*b*) \kappa(Mstar).-Hall(Mstar) Kstar /\ \sigma(M).-Hc
(*c*) 'C_(Mstar’ _\sigma)(Kstar) = K /\ \kappa(M) =i \ta
(*d*) [/\ cyclic Z, M :&: Mstar = Z,
{in K*#, forall x, 'C_M[x] = Z}, {in Kstar"#, forall y
& {in K"# & Kstar™#, forall x y, 'C[x * y] = Z}]
& [/\ (*e*) [/\ trivIset (Zhat :": G), 'N(Zhat) = Z,
{in~: M, forall g, [disjoint Zhat & M :" g}

G. Gonthier)

From mathematical text to formal documents
- «

Circular Convolution of two Signals

@®y), = x(m)y(n — m)
m=0
I 1 . I 1 1 1 1 1 1 1
|...: : : : .. :ﬂteaunderf(:ba-v.)'
; 4 P & : : : f(x)
f . : : : : g¢-x)
05_3 :.: KRR PRl TN ‘ : (f‘gn)
1] l 1 1 1
1.5 1 0.5 0 0.5 1 15 2 25 3

Definition convs x y := \col. n \summ xm 6 * y (n-m) 0.

—

N-1 n—(N-1)

x®Yh = Z.\'(m)_\'(n —-—m) = Z x(n = Dy()

n= I=n
= g_\'([).\'(n -1)

=0
— (_“ (€] -")n

Lemma convsC : commutative convs.

Proof.

move=> X y; apply/matrixP=> n k; rewrite !mxE {k}.
rewrite (reindex inj (inj comp (addrI n) oppr inj)).

W N

jsCog: history

2013:
2015:
2015:
2015:
2015:
2016:
2019:

isCoqg’s birth wasn’t planned!

Teaching assistant at UPenn, Software Foundations
Send to Coq to js_of_ocaml (joke) but it worked!
First version thanks to first CUDW (P. Jouvelot)
Benoit Pin develops first interface

Prime numbers example + packages

SerAPI, 1improved protocol (C. Pit-Claudel)
Shachar: worker, WASM, packs, company, print, node..

Very opinionated project from the start

jsCoq: original design philosophy

Interactive Literate Proqgramming and Proving

Document at the center:
Start from existing document, instrument with Coq

Lightweight:
Keep i1t simple, maintainable, standards-based

Server-less:
Servers disappear, self-contained stays

jsCoq: demos

https://www.yvoutube.com/watch?v=COukSOE5utA
https://www.voutube.com/watch?v=IFCGzBDTpCo
https://eloguentjavascript.net/11 async.html
First talk(s)

https://cog.vercel.app/
https://github.com/jscog/jscoqg/#examples

https://www.youtube.com/watch?v=COukSOE5utA
https://www.youtube.com/watch?v=IFCGzBDTpCo
https://eloquentjavascript.net/11_async.html
https://coq.vercel.app/
https://github.com/jscoq/jscoq/?tab=readme-ov-file#examples

jsCog “1.0” architecture: frontend

Coq manager:
Coordinates events coming from HTML page and Coq

Layout manager:
Controls the jsCoq panel

Package manager:
Manages package loading

CodeMirror Provider:
Presents a set of CM5 editors as single document

The CM provider parses the Coq document and submit
sentences to Coq; goals are displayed on request

jsCog “1.0” protocol

type jscoq_cmd

InfoPkg of
LoadPkg of
Init of
NewDoc of

string * string list
string * string
jscoq_options
doc_options

Add of Stateid.t * Stateid.t * ..
Cancel of Stateid.t

Exec of Stateid.t

Query of Stateid.t * route_id * query
Ast of Stateid.t

Register of string

Put of string x string

GetOpt of string list

InterruptSetup of opaque
ReassureLoadPath of lib_path

Load of
Compile of

string
string

type jscoq_answer

CoqInfo
Ready
Added
Pending
Cancelled
ModeInfo
GoalInfo
Ast
CoqOpt
Log
Feedback

of

string

Stateid.t

Stateid.t * Loc.t option

Stateid.t * string list * string list
Stateid.t list

Stateid.t * in_mode

Stateid.t * Pp.t reified_goal option
Vernacexpr.vernac_control option
string list * Goptions.option_value
Feedback.level * Pp.t
Feedback.feedback

SearchResults of route_id * Qualified_name.t Seq.t

Loaded
Compiled
CogExn
JsonExn

of
of
of
of

string * Stateid.t
string

{ loc : Loc.t option .. }
string

jsCog “1.0”

: success and limitations

isCoq proved popular!

success: working reasonably well, real-world proofs
success: many cool features! (auto-load, collab, inspect)
success: serverless approach passed the test of time

limitation:
limitation:
limitation:
limitation:

Document model and editor support
Cogq API / STM

Class preparation workflow
maintenance / complexity

jsCog “2.0” and Fleche

Context: looking at the problem since 2016

Motivation: late 2021, SF / CoREACT / Waterproof / others
Goal: New use cases & fix many existing problems

How: Fleche / cog-lsp (long time wish, long time research)

Improvements:
o Maintainability: Fleche is simple, sound, and extensible
o Modularity, unification: Reusable components, several editors
o New features: full-project, native hybrid, incremental, declarative

e jsCoq 2.0: platform for research,
education, and experimentation

jsCog “2.0”: Main novelties and changes

e Frontend:
e Frontend:

e Backend:
e Backend:

e General:
e General:
e General:

ported to typescript, greatly simplified
support several editors

custom -> LSP + a few extensions
built by cog-lsp CI

native hybrid document / theory model
large improvements on infra, CI
improvement on client/server FS model

Fleche: Maintenance, Extensibility

Stable core engine (0 open core bugs)
Most problems or features: prototypes / workarounds exist

CoREACT graph editor (A. Lafont)
CogPilot (A. Kozyrev, A. Podkopaev)
ViXZ Visualizer (B. Shah)
Waterproof (J. Portergies, Waterproof team)
petanque (G. Baudart)
jsCoq 2 (S. Itzhaky)
ERooster (S. Itzhakty, E. Singer)
Coq-universe (A. Caglayan)

Python, VIM, Emacs, clients (several contributors)

Fleche: interaction modes

Document Updates

e Fleche scans the workspace for
proof documents and config

e Users / editors just relay
changes on the documents

e Fleche decides what to do on
those, maybe nothing!

e No more need for a build system

Document Queries

Document-level positions
constitute ground-truth

User can query for specific
objects in a set of documents
Then Fleche will decide how to
return these objects ASAP
That’s the base for the
upcoming plugin 1interface

Document interaction as a build system at the core of the philosophy

Do we need jsCoq anymore?

e github.dev demo

Fleche unifies all the platforms

A1l you need now is to drop a git repos into Fleche
VSCode custom editors: jsCoq becomes really minimal
Exploring this question with WaterProof devs

jsCoq “2.0”: protocol extensions

e https://github.com/jscoq/jscog/issues/377

Range-based offsets (LSP?)
Package management
Interruption setup (LSP?)
Virtual FS (planned for LSP)

https://github.com/jscoq/jscoq/issues/377

jsCoq “2.0”: virtual FS

LSP/jsCoq

Documents Documents

Editors and Workers
have different FS view

jsCog “2.0”: editors

e Demo of CodeMirror, ProseMirror, Curvenote

jsCog “2.0”: addons / packages

e As of today we distribute packages in a zip file
e Not clear how to best organize this
e We require some extra metadata to implement auto-require

jsCog “2.0”: TODO

Coq patches: help would be nice

64-bit build: 32-bit builds are going away

Package manager: need to figure out a robust solution

Web development: interface to expose the FS properly
Documentation: seems that this needs a lot of improvement
Packaging: to npm, other forms?

OCaml + WASM: exploring upstream integration

Lots more -dideas!

Discussion Time

Thanks!

