
A single number type for Math education
in Type Theory

Yves Bertot

June 2024

1 / 23



The context

▶ Efforts to use theorem provers like Lean, Isabelle, or Rocq in
teaching

▶ language capabilities, documentation, error message
▶ Strong inspiration: Waterproof
▶ similar experiment on Lean (Lean Verbose, for instance)

▶ Our contention: the contents also play a role
▶ Several types for numbers, several versions of each operation
▶ Coercions may be hidden, they can still block some operations
▶ Type theory forces developers to define functions where they

should be underfined

▶ Typing helps young mathematicians, but not the type of
natural numbers

2 / 23



Characteristics of the natural numbers

▶ Positive sides
▶ An inductive type
▶ computation by reduction (faster than rewriting)
▶ Proof by induction as instance of a general scheme
▶ Recusive definitions are mostly natural

▶ Negative sides
▶ Subtraction is odd: the value of 3− 5 is counterintuitive
▶ The status of function/constructor S is a hurdle for students
▶ In Coq, S 4 and 5 and interchangeable, but

S x and x + 1 are not
▶ The time spent to learn pattern matching is not spent on math
▶ Too much cognitive load

3 / 23



Numbers in the mind of math beginners

▶ Starting at age 12, kids probably know about integer, rational,
and real numbers

▶ 3− 5 exists as a number, it is not 0

▶ Computing 127− 42 yields a natural number, 3− 5 an
integer, and 1/3 a rational

▶ 42/6 yields a natural number

▶ These perception are right, respecting them is time efficient

4 / 23



Proposal

▶ Use only one type of numbers: real numbers
▶ Chosen to be intuitive for studends at end of K12
▶ Including the order relation

▶ View other known types as subsets

▶ Include stability laws in silent proof automation
▶ Strong inspiration: the PVS approach

▶ However PVS is too aggressive on automation for education

▶ Natural numbers, integers, etc, still silently present in the
background

5 / 23



Plan

▶ Review of usages of natural numbers and integers

▶ Defining subsets of R for inductive types

▶ From Z and N to R and back

▶ Ad hoc proofs of membership

▶ Recursive definitions and iterated functions

▶ Finite sets and big operations

▶ Minimal set of tactics

▶ Practical examples, around Fibonacci, factorials and binomials

6 / 23



Usages of natural numbers and integers

▶ A basis for proofs by induction

▶ Recursive sequence definition

▶ iterating an operation a number of time f n(k)

▶ The sequence 0 . . . n

▶ indices for finite collections,

▶ indices for iterated operations
∑n

i=m f (i)

▶ Specific to Coq+Lean+Agda: constructor normal forms as
targets of reduction

▶ In Coq real numbers, numbers 0, 1, ..., 37, ... rely on the
inductive type of integers for representation
▶ In Coq, you can define Zfact as an efficient equivalent of

factorial and compute 100!

7 / 23



Defining subsets of R for inductive types

▶ Inductive predicate approach
▶ Inherit the induction principle
▶ Prove the existence of a corresponding natural or integer

▶ Existence approach
▶ Show the properties normally used as constructors
▶ Transport the induction principle from the inductive type to

the predicate
▶ Hurdle: not possible to use the induction tactics if the type of

data is not inductive

8 / 23



Inductive predicate in Coq

Require Import Reals.

Open Scope R_scope.

Inductive Rnat : R -> Prop :=

Rnat0 : Rnat 0

| Rnat_succ : forall n, Rnat n -> Rnat (n + 1).

Generated induction principle:

nat_ind

: forall P : R -> Prop,

P 0 ->

(forall n : R, Rnat n -> P n -> P (n + 1)) ->

forall r : R, Rnat r -> P r

9 / 23



from N and Z to R and back

▶ Reminder: the types N (nat) and Z (Z), should not be
exposed

▶ Injections INR and IZR already exist

▶ New functions IRN and IRZ

▶ definable using Hilbert’s choice operator
▶ Requires ClassicalEpsilon
▶ use the inverse image for INR and IZR when Rnat or Rint

holds

10 / 23



Degraded typing

▶ Stability laws provide automatable proofs of membership

Existing Class Rnat.

Lemma Rnat_add x y : Rnat x -> Rnat y -> Rnat (x + y).

Proof. ... Qed.

Lemma Rnat_mul x y : Rnat x -> Rnat y -> Rnat (x * y).

Proof. ... Qed.

Lemma Rnat_pos : Rnat (IZR (Z.pos _)).

Proof. ... Qed.

Existing Instances Rnat0 Rnat_succ Rnat_add Rnat_mul Rnat_pos.

▶ typeclasses eauto or exact . will solve automatically
Rnat x -> Rnat ((x + 2) * x).

11 / 23



Ad hoc proofs of membership

▶ When n,m ∈ N,m ≤ n, (n −m) ∈ N can also be proved

▶ This requires an explicit proofs

▶ Probably good in a training context for students

▶ Similar for division

12 / 23



Recursive functions

▶ recursive sequences are also a typical introductory subject

▶ As an illustration, let us consider the Fibonacci sequence
The Fibonacci sequence is the function F such that F0 = 0,
F1 = 1, and Fn+2 = Fn + Fn+1 for every natural number n

▶ Proof by induction and the defining equations are enough to
study a sequence

▶ But defining is still needed

▶ Solution: define a recursive definition command using Elpi

13 / 23



Definition of recursive functions

▶ We can use a recursor, mirror of the recursor on natural
numbers

▶ Rnat rec : ?A -> (R -> ?A -> ?A) -> R -> ?A

▶ Multi-step recursion can be implemented by using tuples of
the right size

(* fib 0 = 0 fib 1 = 1 *)

(* fib n = fib (n - 1) + fib (n - 2) *)

Definition fibr := Rnat_rec [0; 1]

(fun n l => [nth 1 l 0; nth 0 l 0 + nth 1 l 0]).

14 / 23



Meta-programming a recursive definition command

▶ The definition in the previous slide can be generated

▶ Taking as input the equations (in comments)
▶ The results of the definition are in two parts

▶ The function of type R -> R
▶ The proof the logical statement for that function

Recursive (def fib such that

fib 0 = 0 /\

fib 1 = 1 /\

forall n : R, Rnat (n - 2) ->

fib n = fib (n - 2) + fib (n - 1)).

15 / 23



Compute with real numbers

▶ Compute 42 - 67. yields a puzzling answer
▶ Tons of R1, +, *, and parentheses.

▶ Compute (42 - 67)%Z. yields the right answer
▶ Except it is in the wrong type

16 / 23



Compute with real numbers: our solution

▶ New command R compute.

▶ R compute (42 - 67). succeeds and displays -25

▶ R compute (fib (42 - 67)). fails!
▶ R compute (fib 42) th name. succeeds and saves a proof

of equality.
▶ Respecting the fact that fib is only defined for natural

number inputs

▶ Implemented by exploiting a correspondance between
elementary operations on R, Z (with proofs)

▶ ELPI programming

▶ Mirror a recursive definition in R to a definition in Z

▶ Correcness theorem of the mirror process has a Rnat on the
input.

17 / 23



Finite sets of indices

▶ Usual mathematical idiom : 1 . . . n, 0 . . . n, (vi )i=1...n

▶ Provide a Rseq : R -> R -> R
▶ Rseq 0 3 = [0; 1; 2]

▶ Using the inductive type of lists here

▶ This may require explaining structural recursive programming
to students

▶ At least map and cat (noted ++)

18 / 23



Big sums and products

▶ Taking inspiration from Mathematical components
▶ \sum (a <= i < b) f(i)

▶ Also \prod

▶ Well-typed when a and b are real numbers

▶ Relevant when a < b

▶ This needs a hosts of theorems
▶ Chipping off terms at both ends
▶ Cutting in the middle
▶ Shuffling the indices

▶ Mathematical Components bigop library provides a guideline

19 / 23



Iterated functions

▶ Mathematical idiom : f n, when f : A− > A

▶ We provide Rnat iter whose numeric argument is a real
number

▶ Only meaning full when the real number satisfies Rnat

▶ Useful to define many of the functions we are accustomed to
see

▶ Very few theorems are needed to explain its behavior
▶ f n+m(a) = f n(f m(a)) f 1(a) = f (a) f 0(a) = a

20 / 23



Minimal set of tactics

▶ replace
▶ ring and field for justifications
▶ No need to massage formulas step by step through rewriting

▶ intros, exists, split, destruct to handle logical
connectives (as usual)

▶ rewrite to handle the behavior of all defined functions (and
recursors)

▶ unfold for functions defined by students
▶ But we should block unfolding of recursive functions

▶ apply and lra to handle all side conditions related to bounds
▶ typeclasses eauto to prove membership in Rnat

▶ Explicit handling for subtraction and division

▶ Possibility to add ad-hoc computing facilities for user-defined
▶ Relying on mirror functions computing on inductive nat or Z

21 / 23



Demonstration time

▶ A study of factorials and binomial numbers
▶ Efficient computation of factorial numbers
▶ Proofs relating the two points of view on binomial numbers,

ratios or recursive definition
▶ A proof of the expansion of (x + y)n

▶ A study the fibonacci sequence

▶ F(i) = ϕi−ψi

ϕ−ψ (ϕ golden ratio)

22 / 23



The “17” exercise

▶ Prove that there exists an n larger than 4 such that(
n
5

)
= 17

(
n
4

)
(suggested by S. Boldo, F. Clément, D. Hamelin, M. Mayero,
P. Rousselin)

▶ Easy when using the ratio of factorials and eliminating
common sub-expressions on both side of the equality

��n!

����(n − 5)!��5!5
= 17

��n!

����(n − 4)!(n−4)��4!

▶ They use the type of natural numbers and equation(
n

p + 1

)
× (p + 1) =

(
n
p

)
× (n − p)

23 / 23


