A single number type for Math education in Type Theory

Yves Bertot

June 2024

1 / 23

 299

メロトメ 御 トメ 差 トメ 差 トー 差

The context

- ▶ Efforts to use theorem provers like Lean, Isabelle, or Rocq in teaching
- ▶ language capabilities, documentation, error message
	- ▶ Strong inspiration: Waterproof
	- ▶ similar experiment on Lean (Lean Verbose, for instance)
- \triangleright Our contention: the contents also play a role
	- ▶ Several types for numbers, several versions of each operation
	- \triangleright Coercions may be hidden, they can still block some operations
	- ▶ Type theory forces developers to define functions where they should be underfined
- ▶ Typing helps young mathematicians, but not the type of natural numbers

Characteristics of the natural numbers

\blacktriangleright Positive sides

- \blacktriangleright An inductive type
- \triangleright computation by reduction (faster than rewriting)
- \triangleright Proof by induction as instance of a general scheme
- ▶ Recusive definitions are mostly natural
- \blacktriangleright Negative sides
	- ▶ Subtraction is odd: the value of $3 5$ is counterintuitive
	- \triangleright The status of function/constructor S is a hurdle for students
	- ▶ In Coq, S 4 and 5 and interchangeable, but $S \times$ and $x + 1$ are not
	- ▶ The time spent to learn pattern matching is not spent on math
	- ▶ Too much cognitive load

Numbers in the mind of math beginners

- ▶ Starting at age 12, kids probably know about integer, rational, and real numbers
- ▶ 3 $-$ 5 exists as a number, it is not 0
- ▶ Computing $127 42$ yields a natural number, $3 5$ an integer, and $1/3$ a rational
- \blacktriangleright 42/6 yields a natural number
- \blacktriangleright These perception are right, respecting them is time efficient

Proposal

▶ Use only one type of numbers: real numbers

- \triangleright Chosen to be intuitive for studends at end of K12
- \blacktriangleright Including the order relation
- ▶ View other known types as subsets
- \blacktriangleright Include stability laws in silent proof automation
- ▶ Strong inspiration: the PVS approach

▶ However PVS is too aggressive on automation for education

▶ Natural numbers, integers, etc, still silently present in the background

Plan

- ▶ Review of usages of natural numbers and integers
- \blacktriangleright Defining subsets of $\mathbb R$ for inductive types
- \blacktriangleright From $\mathbb Z$ and $\mathbb N$ to $\mathbb R$ and back
- ▶ Ad hoc proofs of membership
- \blacktriangleright Recursive definitions and iterated functions
- \blacktriangleright Finite sets and big operations
- \blacktriangleright Minimal set of tactics
- ▶ Practical examples, around Fibonacci, factorials and binomials

Usages of natural numbers and integers

- \blacktriangleright A basis for proofs by induction
- ▶ Recursive sequence definition
- iterating an operation a number of time $f^{n}(k)$
- \blacktriangleright The sequence $0 \ldots n$
- \blacktriangleright indices for finite collections,
- indices for iterated operations $\sum_{i=m}^{n} f(i)$
- \triangleright Specific to Coq+Lean+Agda: constructor normal forms as targets of reduction
- \blacktriangleright In Coq real numbers, numbers 0, 1, ..., 37, ... rely on the inductive type of integers for representation
	- ▶ In Coq, you can define Zfact as an efficient equivalent of factorial and compute 100!

Defining subsets of $\mathbb R$ for inductive types

▶ Inductive predicate approach

- \blacktriangleright Inherit the induction principle
- ▶ Prove the existence of a corresponding natural or integer
- ▶ Existence approach
	- \triangleright Show the properties normally used as constructors
	- ▶ Transport the induction principle from the inductive type to the predicate
	- ▶ Hurdle: not possible to use the induction tactics if the type of data is not inductive

Inductive predicate in Coq

```
Require Import Reals.
Open Scope R_scope.
```

```
Inductive Rnat : R \rightarrow Prop :=
  Rnat0 : Rnat 0
| Rnat_succ : forall n, Rnat n \rightarrow Rnat (n + 1).
```
Generated induction principle:

```
nat_ind
       : forall P : R -> Prop,
         P 0 \rightarrow(forall n : R, Rnat n \rightarrow P n \rightarrow P (n + 1)) ->
         forall r : R, Rnat r \rightarrow P r
```
from $\mathbb N$ and $\mathbb Z$ to $\mathbb R$ and back

- ▶ Reminder: the types $\mathbb N$ (nat) and $\mathbb Z$ (Z), should not be exposed
- ▶ Injections INR and IZR already exist
- ▶ New functions TRN and TRZ
- ▶ definable using Hilbert's choice operator
	- ▶ Requires ClassicalEpsilon
	- ▶ use the inverse image for INR and IZR when Rnat or Rint holds

Degraded typing

 \triangleright Stability laws provide automatable proofs of membership Existing Class Rnat.

Lemma Rnat_add x y : Rnat x \rightarrow Rnat y \rightarrow Rnat $(x + y)$. Proof. ... Qed.

Lemma Rnat_mul x y : Rnat x \rightarrow Rnat y \rightarrow Rnat $(x * y)$. Proof. ... Qed.

Lemma Rnat_pos : Rnat (IZR (Z.pos _)). Proof. ... Qed.

Existing Instances Rnat0 Rnat_succ Rnat_add Rnat_mul Rnat_pos.

▶ typeclasses eauto or exact _. will solve automatically Rnat $x \rightarrow$ Rnat $((x + 2) * x)$.

Ad hoc proofs of membership

- ▶ When $n, m \in \mathbb{N}, m \le n$, $(n m) \in \mathbb{N}$ can also be proved
- ▶ This requires an explicit proofs
- ▶ Probably good in a training context for students
- \blacktriangleright Similar for division

Recursive functions

- ▶ recursive sequences are also a typical introductory subject
- \triangleright As an illustration, let us consider the *Fibonacci* sequence The Fibonacci sequence is the function F such that $F_0 = 0$, $F_1 = 1$, and $F_{n+2} = F_n + F_{n+1}$ for every natural number n
- ▶ Proof by induction and the defining equations are enough to study a sequence
- \blacktriangleright But *defining* is still needed
- ▶ Solution: define a recursive definition command using Elpi

Definition of recursive functions

- ▶ We can use a *recursor*, mirror of the recursor on natural numbers
- ▶ Rnat rec : ?A -> (R -> ?A -> ?A) -> R -> ?A
- ▶ Multi-step recursion can be implemented by using tuples of the right size

 $(*$ fib $0 = 0$ fib $1 = 1$ *) $(*$ fib $n =$ fib $(n - 1) +$ fib $(n - 2) *$

Definition fibr $:=$ Rnat_rec $[0; 1]$ $(fun n 1 => [nth 1 1 0; nth 0 1 0 + nth 1 1 0]).$

KORK EXTERNS ORA 14 / 23

Meta-programming a recursive definition command

- \blacktriangleright The definition in the previous slide can be generated
- \blacktriangleright Taking as input the equations (in comments)
- \blacktriangleright The results of the definition are in two parts
	- \blacktriangleright The function of type R \blacktriangleright R
	- \blacktriangleright The proof the logical statement for that function

```
Recursive (def fib such that
               fib 0 = 0 / \lambdafib 1 = 1 \landforall n : R, Rnat (n - 2) \rightarrowfib n = fib (n - 2) + fib (n - 1).
```
Compute with real numbers

▶ Compute $42 - 67$. yields a puzzling answer \blacktriangleright Tons of R1, $+$, $*$, and parentheses. ▶ Compute $(42 - 67)$ %Z. yields the right answer \blacktriangleright Except it is in the wrong type

Compute with real numbers: our solution

- ▶ New command R_compute.
- \triangleright R_compute (42 67). succeeds and displays -25
- \blacktriangleright R_compute (fib (42 67)). fails!
- ▶ R compute (fib 42) th name. succeeds and saves a proof of equality.
	- \triangleright Respecting the fact that fib is only defined for natural number inputs
- \blacktriangleright Implemented by exploiting a correspondance between elementary operations on R, Z (with proofs)
- ▶ ELPI programming
- \triangleright Mirror a recursive definition in R to a definition in Z
- ▶ Correcness theorem of the mirror process has a Rnat on the input.

Finite sets of indices

- ▶ Usual mathematical idiom : $1 \ldots n$, $0 \ldots n$, $(v_i)_{i=1...n}$
- ▶ Provide a Rseq : R -> R -> R

▶ Rseq 0 3 = $[0; 1; 2]$

- \triangleright Using the inductive type of lists here
- \triangleright This may require explaining structural recursive programming to students
- \triangleright At least map and cat (noted $++$)

Big sums and products

▶ Taking inspiration from Mathematical components

- \blacktriangleright \sum (a \Leftarrow i \lt b) $f(i)$
	- ▶ Also \prod
- \triangleright Well-typed when a and b are real numbers
- \blacktriangleright Relevant when $a < b$
- \blacktriangleright This needs a hosts of theorems
	- ▶ Chipping off terms at both ends
	- \blacktriangleright Cutting in the middle
	- \blacktriangleright Shuffling the indices
- ▶ Mathematical Components bigop library provides a guideline

Iterated functions

- ▶ Mathematical idiom : f^n , when $f : A->A$
- \triangleright We provide Rnat iter whose numeric argument is a real number
- ▶ Only meaning full when the real number satisfies Rnat
- ▶ Useful to define many of the functions we are accustomed to see

20 / 23

KORK EXTERNS ORA

 \triangleright Very few theorems are needed to explain its behavior • $f^{n+m}(a) = f^n(f^m(a))$ $f^1(a) = f(a)$ $f^0(a) = a$

Minimal set of tactics

- ▶ replace
	- ▶ ring and field for justifications
	- ▶ No need to massage formulas step by step through rewriting
- ▶ intros, exists, split, destruct to handle logical connectives (as usual)
- ▶ rewrite to handle the behavior of all defined functions (and recursors)
- ▶ unfold for functions defined by students
	- \triangleright But we should block unfolding of recursive functions
- ▶ apply and lra to handle all side conditions related to bounds
- ▶ typeclasses eauto to prove membership in Rnat
	- \blacktriangleright Explicit handling for subtraction and division
- ▶ Possibility to add ad-hoc computing facilities for user-defined
	- ▶ Relying on mirror functions computing on inductive nat or Z

Demonstration time

▶ A study of factorials and binomial numbers

- ▶ Efficient computation of factorial numbers
- ▶ Proofs relating the two points of view on binomial numbers, ratios or recursive definition
- A proof of the expansion of $(x + y)^n$
- \blacktriangleright A study the fibonacci sequence

$$
\blacktriangleright \mathcal{F}(i) = \frac{\phi^i - \psi^i}{\phi - \psi} \ (\phi \text{ golden ratio})
$$

The "17" exercise

 \blacktriangleright Prove that there exists an *n* larger than 4 such that

$$
\left(\begin{array}{c}n\\5\end{array}\right)=17\left(\begin{array}{c}n\\4\end{array}\right)
$$

(suggested by S. Boldo, F. Clément, D. Hamelin, M. Mayero, P. Rousselin)

 \blacktriangleright Easy when using the ratio of factorials and eliminating common sub-expressions on both side of the equality

$$
\frac{n!}{(n-5)!5!5} = 17 \frac{n!}{(n-4)!_{(n-4)}4!}
$$

 \blacktriangleright They use the type of natural numbers and equation

$$
\left(\begin{array}{c} n \\ p+1 \end{array}\right) \times (p+1) = \left(\begin{array}{c} n \\ p \end{array}\right) \times (n-p)
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ ... 할 23 / 23