A single number type for Math education
in Type Theory

Yves Bertot

June 2024

1/23

The context

» Efforts to use theorem provers like Lean, Isabelle, or Rocq in
teaching
» language capabilities, documentation, error message
» Strong inspiration: Waterproof
» similar experiment on Lean (Lean Verbose, for instance)
» Qur contention: the contents also play a role
» Several types for numbers, several versions of each operation
» Coercions may be hidden, they can still block some operations
» Type theory forces developers to define functions where they
should be underfined
» Typing helps young mathematicians, but not the type of
natural numbers

2/23

Characteristics of the natural numbers

> Positive sides
» An inductive type
> computation by reduction (faster than rewriting)
» Proof by induction as instance of a general scheme
» Recusive definitions are mostly natural
> Negative sides
» Subtraction is odd: the value of 3 — 5 is counterintuitive
» The status of function/constructor S is a hurdle for students
» In Coq, S 4 and 5 and interchangeable, but
S xand x + 1 are not
» The time spent to learn pattern matching is not spent on math
» Too much cognitive load

3/23

Numbers in the mind of math beginners

» Starting at age 12, kids probably know about integer, rational,
and real numbers

» 3 — 5 exists as a number, it is not 0

» Computing 127 — 42 yields a natural number, 3 —5 an
integer, and 1/3 a rational

» 42/6 yields a natural number

» These perception are right, respecting them is time efficient

4/23

Proposal

» Use only one type of numbers: real numbers

» Chosen to be intuitive for studends at end of K12
» Including the order relation

> View other known types as subsets
» Include stability laws in silent proof automation

» Strong inspiration: the PVS approach
» However PVS is too aggressive on automation for education

> Natural numbers, integers, etc, still silently present in the
background

5/23

Plan

Review of usages of natural numbers and integers
Defining subsets of R for inductive types

From Z and N to R and back

Ad hoc proofs of membership

Recursive definitions and iterated functions

Finite sets and big operations

Minimal set of tactics

VV VvV VVYVY

Practical examples, around Fibonacci, factorials and binomials

6/23

Usages of natural numbers and integers

A basis for proofs by induction

Recursive sequence definition

iterating an operation a number of time "(k)
The sequence 0...n

indices for finite collections,

indices for iterated operations > 7 (i)

Specific to Coq+Lean+Agda: constructor normal forms as
targets of reduction

In Coq real numbers, numbers 0, 1, ..., 37, ... rely on the
inductive type of integers for representation

» In Coq, you can define Zfact as an efficient equivalent of
factorial and compute 100!

7/23

Defining subsets of R for inductive types

» Inductive predicate approach

» Inherit the induction principle
» Prove the existence of a corresponding natural or integer

P Existence approach
» Show the properties normally used as constructors
» Transport the induction principle from the inductive type to
the predicate
» Hurdle: not possible to use the induction tactics if the type of
data is not inductive

8/23

Inductive predicate in Coq

Require Import Reals.
Open Scope R_scope.

Inductive Rnat : R -> Prop :=
RnatO : Rnat O
| Rnat_succ : forall n, Rnat n -> Rnat (n + 1).

Generated induction principle:

nat_ind
: forall P : R -> Prop,
PO >
(foralln : R, Rnat n > Pn >P (n+ 1)) —>
forall r : R, Rnat r > P r

9/23

from N and Z to R and back

» Reminder: the types N (nat) and Z (Z), should not be
exposed

» Injections INR and IZR already exist

» New functions IRN and IRZ

» definable using Hilbert's choice operator

» Requires ClassicalEpsilon
» use the inverse image for INR and IZR when Rnat or Rint
holds

10/23

Degraded typing
» Stability laws provide automatable proofs of membership
Existing Class Rnat.

Lemma Rnat_add x y : Rnat x -> Rnat y -> Rnat (x + y).
Proof. ... Qed.

Lemma Rnat_mul x y : Rnat x -> Rnat y -> Rnat (x * y).
Proof. ... Qed.

Lemma Rnat_pos : Rnat (IZR (Z.pos _)).
Proof. ... Qed.

Existing Instances RnatO Rnat_succ Rnat_add Rnat_mul Rnat_pos.

> typeclasses eauto or exact _. will solve automatically
Rnat x -> Rnat ((x + 2) * x).

11/23

Ad hoc proofs of membership

» When n,m € N,m < n, (n— m) € N can also be proved
» This requires an explicit proofs

» Probably good in a training context for students

» Similar for division

12/23

Recursive functions

P recursive sequences are also a typical introductory subject

» As an illustration, let us consider the Fibonacci sequence
The Fibonacci sequence is the function F such that Fy = 0,
Fi =1, and Fhi2 = F, + Fny1 for every natural number n

» Proof by induction and the defining equations are enough to
study a sequence

» But defining is still needed
» Solution: define a recursive definition command using Elpi

13/23

Definition of recursive functions

» We can use a recursor, mirror of the recursor on natural
numbers

» Rnatrec : 7A -> (R -> 7A -> 7A) -> R -> 7A
» Multi-step recursion can be implemented by using tuples of
the right size

(x fib 0 =0 fib 1 =1 *)
(x fib n = fib (n - 1) + fib (n - 2) *)

Definition fibr := Rnat_rec [0; 1]
(funnl=>[nth110; nth 010+ mnth11O0]).

14/23

Meta-programming a recursive definition command

» The definition in the previous slide can be generated

» Taking as input the equations (in comments)
» The results of the definition are in two parts

» The function of type R -> R
» The proof the logical statement for that function

Recursive (def fib such that
fib 0 = 0 /\
fib 1 =1 /\
forall n : R, Rnat (n - 2) —>

fibn = fib (n - 2) + fib (n - 1)).

15/23

Compute with real numbers

> Compute 42 - 67. yields a puzzling answer
» Tons of R1, +, *, and parentheses.

> Compute (42 - 67)%Z. yields the right answer
P> Except it is in the wrong type

16/23

Compute with real numbers: our solution

vvyyypy

v

New command R_compute.
R_compute (42 - 67). succeeds and displays -25
R_compute (fib (42 - 67)). fails!

R_compute (fib 42) th_name. succeeds and saves a proof
of equality.
» Respecting the fact that f£ib is only defined for natural
number inputs

Implemented by exploiting a correspondance between
elementary operations on R, Z (with proofs)

ELPI programming
Mirror a recursive definition in R to a definition in Z

Correcness theorem of the mirror process has a Rnat on the
input.

17/23

Finite sets of indices

» Usual mathematical idiom : 1...n,0...n, (vj)i=1..n
» ProvideaRseq : R ->R ->R

> Rseq 0 3 = [0; 1; 2]
Using the inductive type of lists here

vy

This may require explaining structural recursive programming
to students

» At least map and cat (noted ++)

18/23

Big sums and products

» Taking inspiration from Mathematical components
» \sum_(a <= i < b) f(i)
> Also \prod
> Well-typed when a and b are real numbers
P> Relevant when a < b

This needs a hosts of theorems

» Chipping off terms at both ends
» Cutting in the middle
» Shuffling the indices

» Mathematical Components bigop library provides a guideline

v

19/23

[terated functions

» Mathematical idiom : ", when f: A— > A

» We provide Rnat_iter whose numeric argument is a real
number

» Only meaning full when the real number satisfies Rnat

» Useful to define many of the functions we are accustomed to
see

P> Very few theorems are needed to explain its behavior
> frim(a) = f(f"(a)) fl(a) =f(a) f°(a)=a

20/23

Minimal set of tactics

> replace
> ring and field for justifications
» No need to massage formulas step by step through rewriting
P> intros, exists, split, destruct to handle logica
connectives (as usual)
» rewrite to handle the behavior of all defined functions (and
recursors)
» unfold for functions defined by students
» But we should block unfolding of recursive functions
» apply and 1ra to handle all side conditions related to bounds
> typeclasses eauto to prove membership in Rnat
» Explicit handling for subtraction and division
» Possibility to add ad-hoc computing facilities for user-defined
» Relying on mirror functions computing on inductive nat or Z

21/23

Demonstration time

» A study of factorials and binomial numbers

» Efficient computation of factorial numbers
» Proofs relating the two points of view on binomial numbers,

ratios or recursive definition
» A proof of the expansion of (x + y)"

> A study the fibonacci sequence
> F(i) = % (¢ golden ratio)

22/23

The “17" exercise

P> Prove that there exists an n larger than 4 such that

(3)=(3)

(suggested by S. Boldo, F. Clément, D. Hamelin, M. Mayero,
P. Rousselin)

» Easy when using the ratio of factorials and eliminating
common sub-expressions on both side of the equality

v v

[T A P i

» They use the type of natural numbers and equation

<pil>><(p+1)=<z>><(n—p)

23/23

