Towards Quotient Inductive Types in Observational Type Theory

1

Thiago Felicissimo & Nicolas Tabareau

March 12, 2025

Quotients are ubiquitous in mathematics:

• Construction of integers, rationals, reals

- Construction of integers, rationals, reals
- Quotient of a ring by an ideal (e.g., $\mathbb{Z}/n\mathbb{Z}$)

- Construction of integers, rationals, reals
- Quotient of a ring by an ideal (e.g., $\mathbb{Z}/n\mathbb{Z}$)
- Projective space of a vector space

- Construction of integers, rationals, reals
- Quotient of a ring by an ideal (e.g., $\mathbb{Z}/n\mathbb{Z}$)
- Projective space of a vector space
- ...

Quotients are ubiquitous in mathematics:

- Construction of integers, rationals, reals
- Quotient of a ring by an ideal (e.g., $\mathbb{Z}/n\mathbb{Z})$
- Projective space of a vector space
- ...

Unfortunately, quotients can only be formed in Rocq in very specific situations, namely when can define a function escaping the quotient (Mathcomp quotients)

General quotients can be constructed in type theory using the *quotient type*:

A : Type	$R: A \to A \to \operatorname{Prop}$	<i>R</i> equiv. rel.	t:A
A/R : Type			[t]:A/R

General quotients can be constructed in type theory using the *quotient type*:

$$\frac{A: \text{Type} \quad R: A \to A \to \text{Prop} \quad R \text{ equiv. rel.}}{A/R: \text{Type}} \qquad \qquad \frac{t: A}{[t]: A/R}$$

We also need the axiom

$$\mathbf{Q}_{=}: R \mathrel{x} y \to [x] \mathrel{=}_{A/R} [y]$$

for characterizing equality of A/R

General quotients can be constructed in type theory using the *quotient type*:

$$A : Type$$
 $R : A \rightarrow A \rightarrow Prop$ $R equiv. rel.$ $t : A$ $A/R : Type$ $[t] : A/R$

We also need the axiom

$$\mathbf{Q}_{=}: R \mathrel{x} y \to [x] \mathrel{=}_{A/R} [y]$$

for characterizing equality of A/R

Problem Blocks computation, the following closed term is stuck

$$\begin{pmatrix} \text{match } Q_{=} * : [\text{true}] =_{\text{Bool}/(\lambda xy.\{*\})} [\text{true}] \text{ with} \\ | \text{ refl} \to 0 \end{pmatrix} : \text{Nat}$$

General quotients can be constructed in type theory using the *quotient type*:

$$A : Type$$
 $R : A \rightarrow A \rightarrow Prop$ $R equiv. rel.$ $t : A$ $A/R : Type$ $[t] : A/R$

We also need the axiom

$$\mathbf{Q}_{=}: R \mathrel{x} y \to [x] \mathrel{=}_{A/R} [y]$$

for characterizing equality of A/R

Problem Blocks computation, the following closed term is stuck

match
$$Q_{=} * : [true] =_{Bool/(\lambda xy.\{*\})} [true] with$$

| refl $\rightarrow 0$ | solution > 1 | refl > 0

The approach taken by LEAN, as it does not care for canonicity

In Observational Type Theory, equality is instead eliminating using a cast operator:

$$\frac{A, B: \text{Type} \quad p: A =_{\text{Type}} B \quad a: A}{\text{cast}_p^{A \rightsquigarrow B}(a): B}$$

In Observational Type Theory, equality is instead eliminating using a cast operator:

$$\frac{A, B: \text{Type} \quad p: A =_{\text{Type}} B \quad a: A}{\text{cast}_p^{A \hookrightarrow B}(a): B}$$

Crucial property of OTT Computation rules for cast *never look inside eq. proofs* $\operatorname{cast}_{p}^{(A \times B) \rightsquigarrow (A' \times B')} \langle t_1, t_2 \rangle \longrightarrow \langle \operatorname{cast}_{p.1}^{A \rightsquigarrow A'} t_1, \operatorname{cast}_{p.2}^{B \rightsquigarrow B'} t_2 \rangle$

In Observational Type Theory, equality is instead eliminating using a cast operator:

$$\frac{A, B: \text{Type } p: A =_{\text{Type }} B \qquad a: A}{\text{cast}_p^{A \hookrightarrow B}(a): B}$$

Crucial property of OTT Computation rules for cast *never look inside eq. proofs* $\operatorname{cast}_{p}^{(A \times B) \rightsquigarrow (A' \times B')} \langle t_{1}, t_{2} \rangle \longrightarrow \langle \operatorname{cast}_{p.1}^{A \rightsquigarrow A'} t_{1}, \operatorname{cast}_{p.2}^{B \rightsquigarrow B'} t_{2} \rangle$

In Observational Type Theory, equality is instead eliminating using a cast operator:

$$\frac{A, B: \text{Type } p: A =_{\text{Type }} B \qquad a: A}{\text{cast}_p^{A \hookrightarrow B}(a): B}$$

Crucial property of OTT Computation rules for cast *never look inside eq. proofs* $\operatorname{cast}_{p}^{(A \times B) \rightsquigarrow (A' \times B')} \langle t_1, t_2 \rangle \longrightarrow \langle \operatorname{cast}_{p.1}^{A \rightsquigarrow A'} t_1, \operatorname{cast}_{p.2}^{B \rightsquigarrow B'} t_2 \rangle$

Thus, we can add many desirable principles *without blocking computation* (Pujet and Tabareau 2022):

• funext: two functions equal iff pointwise equal

In Observational Type Theory, equality is instead eliminating using a cast operator:

$$\frac{A, B: \text{Type} \quad p: A =_{\text{Type}} B \quad a: A}{\text{cast}_p^{A \hookrightarrow B}(a): B}$$

Crucial property of OTT Computation rules for cast *never look inside eq. proofs* $\operatorname{cast}_{p}^{(A \times B) \rightsquigarrow (A' \times B')} \langle t_1, t_2 \rangle \longrightarrow \langle \operatorname{cast}_{p,1}^{A \rightsquigarrow A'} t_1, \operatorname{cast}_{p,2}^{B \rightsquigarrow B'} t_2 \rangle$

- funext: two functions equal iff pointwise equal
- propext: two propositions equal iff equivalent

In Observational Type Theory, equality is instead eliminating using a cast operator:

$$\frac{A, B: \text{Type} \quad p: A =_{\text{Type}} B \quad a: A}{\text{cast}_p^{A \hookrightarrow B}(a): B}$$

Crucial property of OTT Computation rules for cast *never look inside eq. proofs* $\operatorname{cast}_{p}^{(A \times B) \rightsquigarrow (A' \times B')} \langle t_1, t_2 \rangle \longrightarrow \langle \operatorname{cast}_{p,1}^{A \rightsquigarrow A'} t_1, \operatorname{cast}_{p,2}^{B \rightsquigarrow B'} t_2 \rangle$

- funext: two functions equal iff pointwise equal
- propext: two propositions equal iff equivalent
- uip: equality is proof-irrelevant (like in usual mathematics)

In Observational Type Theory, equality is instead eliminating using a cast operator:

$$\frac{A, B: \text{Type} \quad p: A =_{\text{Type}} B \quad a: A}{\text{cast}_p^{A \hookrightarrow B}(a): B}$$

Crucial property of OTT Computation rules for cast *never look inside eq. proofs* $\operatorname{cast}_{p}^{(A \times B) \rightsquigarrow (A' \times B')} \langle t_1, t_2 \rangle \longrightarrow \langle \operatorname{cast}_{p,1}^{A \rightsquigarrow A'} t_1, \operatorname{cast}_{p,2}^{B \rightsquigarrow B'} t_2 \rangle$

- funext: two functions equal iff pointwise equal
- propext: two propositions equal iff equivalent
- uip: equality is proof-irrelevant (like in usual mathematics)
- Quotient types!

We have quotient types, are we done?

We have quotient types, are we done? No, we also want *Quotient Inductive Types*:

Inductive MSet (*A* : Type) : Type :=

|[]: MSet A $|_{::=} (x : A)(m : MSet A) : MSet A$ $|MSet_{:=} (x y : A)(m : MSet A) : (x :: y :: m) = (y :: x :: m)$

We have quotient types, are we done? No, we also want *Quotient Inductive Types*:

Inductive MSet (*A* : Type) : Type :=

 $|[]: MSet A | _:: _ (x : A)(m : MSet A) : MSet A$ $| MSet_ (x y : A)(m : MSet A) : (x :: y :: m) = (y :: x :: m)$

Correspond to initial models of (non-pure) algebraic theories.

We have quotient types, are we done? No, we also want *Quotient Inductive Types*:

Inductive MSet (*A* : Type) : Type :=

 $|[]: MSet A | _:: _ (x : A)(m : MSet A) : MSet A$ $| MSet_ (x y : A)(m : MSet A) : (x :: y :: m) = (y :: x :: m)$

Correspond to initial models of (non-pure) algebraic theories.

Functions eliminating a QIT must respect equality:

Fixpoint sum : MSet Nat \rightarrow Nat := match l with $| [] \rightarrow 0 \qquad | x :: m \rightarrow x + (sum m)$ $| MSet_{=} x y m \rightarrow (...) : (x + y + sum m) = (y + x + sum m)$

More QITs

Integers, rationals, ...

Inductive Int : Type :=

| 0 : Int

| S (x : Int) : Int

| P(x:Int):Int

 $| Int_{=} (x : Int) : S (P x) = x = P (S x)$

More QITs

Integers, rationals, ...

Inductive Int : Type :=

| 0 : Int

| S (x : Int) : Int

| P(x:Int):Int

 $| \operatorname{Int}_{=} (x : \operatorname{Int}) : S(Px) = x = P(Sx)$

(Free) Groups, monoids, rings, ...

Inductive Mon (A : Type) : Type := | 1 : Mon A | gen (a : A) : Mon A $| _ \cdot _ (x \ y : Mon A) : Mon A$ $| Mon^{1}_{=} (x : Mon A) : 1 \cdot x = x = x \cdot 1$ $| Mon^{\cdot/as}_{=} (x \ y \ z : Mon A) : x \cdot (y \cdot z) = (x \cdot y) \cdot z$

More QITs

Integers, rationals, ...

Inductive Int : Type :=

| 0 : Int

| S (x : Int) : Int

| P(x:Int):Int

 $| Int_{=} (x : Int) : S (P x) = x = P (S x)$

(Free) Groups, monoids, rings, ...

Inductive Mon (A : Type) : Type := | 1 : Mon A | gen (a : A) : Mon A $| _ \cdot _ (x \ y : Mon A) : Mon A$ $| Mon^{1}_{=} (x : Mon A) : 1 \cdot x = x = x \cdot 1$ $| Mon^{\cdot/as}_{=} (x \ y \ z : Mon A) : x \cdot (y \cdot z) = (x \cdot y) \cdot z$

Syntax of prog. languages

Inductive Tm : Type :=

$$| S: Tm | K: Tm | _ \cdot _ (x \ y: Tm) : Tm$$
$$| Tm_{=}^{K} (x \ y: Tm) : K \cdot x \cdot y = x$$
$$| Tm_{=}^{S} (x \ y \ z: Tm) : S \cdot x \cdot y \cdot z = x \cdot z \cdot (y \cdot z)$$

More OITs

Integers, rationals, ...

Inductive Int : Type :=

|0:Int

|S(x:Int):Int|

| P(x : Int) : Int

 $| Int_{=} (x : Int) : S (P x) = x = P (S x)$

(Free) Groups, monoids, rings, ...

. . .

Inductive Mon (A : Type) : Type :=| 1 : Mon A | gen (a : A) : Mon A $|_\cdot_(x y : Mon A) : Mon A$ $| Mon_{-}^{1} (x : Mon A) : 1 \cdot x = x = x \cdot 1$ $|\operatorname{Mon}_{-}^{\cdot/\operatorname{as}}(x \ y \ z : \operatorname{Mon} A) : x \cdot (y \cdot z) = (x \cdot y) \cdot z$

Syntax of prog. languages

Inductive Tm : Type := Inductive $Tm : Ty \rightarrow Type :=$ | S : Tm | K : Tm | $_ \cdot _ (x y : Tm) : Tm$ | true : Tm bool | false : Tm bool $|\operatorname{Tm}_{-}^{\mathsf{K}}(x y : \operatorname{Tm}) : \mathsf{K} \cdot x \cdot y = x$ | if $\{A\}(x : \text{Tm bool})(t u : \text{Tm } A) : \text{Tm } A$ $|\operatorname{Tm}_{-}^{\mathrm{if}/\mathrm{true}} \{A\}(t \ u : \operatorname{Tm} A) : \mathrm{if} \mathrm{true} t \ u = t$ $|\operatorname{Tm}^{\mathsf{S}}_{-}(x \ y \ z : \operatorname{Tm}): \operatorname{S} \cdot x \cdot y \cdot z = x \cdot z \cdot (y \cdot z)$

6

How can we know that OTT extended with QITs is well-behaved?

How can we know that OTT extended with QITs is well-behaved?

Strategy 1 Extend OTT with inductive scheme for QITs

How can we know that OTT extended with QITs is well-behaved?

Strategy 1 Extend OTT with inductive scheme for QITs

Problem Inductive schemes are hard to manipulate formally No go if we want to formally prove normalization

How can we know that OTT extended with QITs is well-behaved?

Strategy 1 Extend OTT with inductive scheme for QITs

Problem Inductive schemes are hard to manipulate formally No go if we want to formally prove normalization

Strategy 2 Encode QITs using inductive types + quotient type Q, both of which have already been studied in OTT by Pujet and Tabareau

How can we know that OTT extended with QITs is well-behaved?

Strategy 1 Extend OTT with inductive scheme for QITs

Problem Inductive schemes are hard to manipulate formally No go if we want to formally prove normalization

Strategy 2 Encode QITs using inductive types + quotient type Q, both of which have already been studied in OTT by Pujet and Tabareau

Problem Eliminator of encoded QIT does not compute properly Moreover, construction does not seem even possible for *infinitary* QITs

How can we know that OTT extended with QITs is well-behaved?

Strategy 1 Extend OTT with inductive scheme for QITs

Problem Inductive schemes are hard to manipulate formally No go if we want to formally prove normalization

Strategy 2 Encode QITs using inductive types + quotient type Q, both of which have already been studied in OTT by Pujet and Tabareau

Problem Eliminator of encoded QIT does not compute properly Moreover, construction does not seem even possible for *infinitary* QITs

Our strategy Extend OTT with a single universal QIT, capable of encoding all QITs

We have proposed a universal non-indexed QIT, adapting Fiore *et al.*'s QW types:

https://github.com/thiagofelicissimo/universal-QITs

Used to define various examples: multisets, SK calculus, finitely branching trees, ...

We have proposed a universal non-indexed QIT, adapting Fiore *et al.*'s QW types:

https://github.com/thiagofelicissimo/universal-QITs

Used to define various examples: multisets, SK calculus, finitely branching trees, ... The next steps of our work are:

We have proposed a universal non-indexed QIT, adapting Fiore *et al.*'s QW types:

https://github.com/thiagofelicissimo/universal-QITs

Used to define various examples: multisets, SK calculus, finitely branching trees, ... The next steps of our work are:

1. Formulate an inductive scheme for non-indexed QITs, then prove that they can all be encoded using our universal QIT

We have proposed a universal non-indexed QIT, adapting Fiore *et al.*'s QW types:

https://github.com/thiagofelicissimo/universal-QITs

Used to define various examples: multisets, SK calculus, finitely branching trees, ... The next steps of our work are:

- 1. Formulate an inductive scheme for non-indexed QITs, then prove that they can all be encoded using our universal QIT
- 2. Prove that OTT + universal QIT is normalizing, and so has decidable typing

We have proposed a universal non-indexed QIT, adapting Fiore *et al.*'s QW types:

https://github.com/thiagofelicissimo/universal-QITs

Used to define various examples: multisets, SK calculus, finitely branching trees, ... The next steps of our work are:

- 1. Formulate an inductive scheme for non-indexed QITs, then prove that they can all be encoded using our universal QIT
- 2. Prove that OTT + universal QIT is normalizing, and so has decidable typing
- 3. Prove that OTT + universal QIT is consistent (not a consequence of 2!)

We have proposed a universal non-indexed QIT, adapting Fiore *et al.*'s QW types:

https://github.com/thiagofelicissimo/universal-QITs

Used to define various examples: multisets, SK calculus, finitely branching trees, ... The next steps of our work are:

- 1. Formulate an inductive scheme for non-indexed QITs, then prove that they can all be encoded using our universal QIT
- 2. Prove that OTT + universal QIT is normalizing, and so has decidable typing
- 3. Prove that OTT + universal QIT is consistent (not a consequence of 2!)

From 2 and 3 we can then deduce canonicity of the theory and of encoded QITs

We have proposed a universal non-indexed QIT, adapting Fiore *et al.*'s QW types:

https://github.com/thiagofelicissimo/universal-QITs

Used to define various examples: multisets, SK calculus, finitely branching trees, ... The next steps of our work are:

- 1. Formulate an inductive scheme for non-indexed QITs, then prove that they can all be encoded using our universal QIT
- 2. Prove that OTT + universal QIT is normalizing, and so has decidable typing
- 3. Prove that OTT + universal QIT is consistent (not a consequence of 2!)

From 2 and 3 we can then deduce canonicity of the theory and of encoded QITs

Once finished, move to more complex classes of types: indexed QITs and QIITs

The ultimate goal

Once we know OTT+QITs is well-behaved, we can have Rocq with

- 1. funext: two functions equal iff pointwise equal
- 2. propext: two propositions equal iff equivalent
- 3. uip: equality is proof-irrelevant (like in usual mathematics)
- 4. (Indexed) Inductive types: Nat, List, Vec,...
- 5. Quotient types
- 6. Quotient Inductive Types: MSet, Int, Mon, ...

all while preserving canonicity, consistency and decidability of typing

The ultimate goal

Once we know OTT+QITs is well-behaved, we can have Rocq with

- 1. funext: two functions equal iff pointwise equal
- 2. propext: two propositions equal iff equivalent
- 3. uip: equality is proof-irrelevant (like in usual mathematics)
- 4. (Indexed) Inductive types: Nat, List, Vec,...
- 5. Quotient types
- 6. Quotient Inductive Types: MSet, Int, Mon, ...

all while preserving canonicity, consistency and decidability of typing

Implementation is already ongoing, prototype supporting 1-4 by Pujet

The ultimate goal

Once we know OTT+QITs is well-behaved, we can have Rocq with

- 1. funext: two functions equal iff pointwise equal
- 2. propext: two propositions equal iff equivalent
- 3. uip: equality is proof-irrelevant (like in usual mathematics)
- 4. (Indexed) Inductive types: Nat, List, Vec,...
- 5. Quotient types
- 6. Quotient Inductive Types: MSet, Int, Mon, ...

all while preserving canonicity, consistency and decidability of typing

Implementation is already ongoing, prototype supporting 1-4 by Pujet

Thank you for your attention!

The universal (finitary) QIT

Sig = record {C : Type; arity :
$$C \rightarrow Nat$$
}

Inductive
$$\overline{\text{Tm}} (\Sigma : \text{Sig})(\Gamma : \text{Type}) : \text{Type} :=$$

| var $(x : \Gamma) : \overline{\text{Tm}} \Sigma \Gamma$
| sym $(c : \Sigma.C) (\mathbf{t} : \text{Vec} (\overline{\text{Tm}} \Sigma \Gamma) (\Sigma.\text{arity } c)) : \overline{\text{Tm}} \Sigma \Gamma$

EqTh Σ = record {E : Type; Ctx : E \rightarrow Type; lhs, rhs : (e : E) \rightarrow Tm Σ (Ctx e)}

Inductive Tm (
$$\Sigma$$
 : Sig) (\mathcal{E} : EqTh Σ) : Type :=
| sym (c : Σ .C) (\mathbf{t} : Vec (Tm $\Sigma \mathcal{E}$) (Σ .arity c)) : Tm $\Sigma \mathcal{E}$
| eq (e : \mathcal{E} .E) (γ : \mathcal{E} .Ctx $e \to$ Tm $\Sigma \mathcal{E}$) : (\mathcal{E} .lhs e)(γ) = (\mathcal{E} .rhs e)(γ)

where $\langle \rangle : \overline{\text{Tm}} \Sigma \Gamma \to (\Gamma \to \text{Tm} \Sigma \mathcal{E}) \to \text{Tm} \Sigma \mathcal{E}$ is defined by $(\text{var } x)\langle \gamma \rangle := \gamma x \qquad (\text{sym } c [t_1, \dots, t_k])\langle \gamma \rangle := \text{sym } c [t_1\langle \gamma \rangle, \dots, t_k\langle \gamma \rangle]$