
TowardsQuotient Inductive Types
in Observational Type Theory

Thiago Felicissimo & Nicolas Tabareau

March 12, 2025

1

Quotients in mathematics

Quotients are ubiquitous in mathematics:

• Construction of integers, rationals, reals

• Quotient of a ring by an ideal (e.g., Z/𝑛Z)
• Projective space of a vector space

• . . .

Unfortunately, quotients can only be formed in Rocq in very specific situations,

namely when can define a function escaping the quotient (Mathcomp quotients)

2

Quotients in mathematics

Quotients are ubiquitous in mathematics:

• Construction of integers, rationals, reals

• Quotient of a ring by an ideal (e.g., Z/𝑛Z)
• Projective space of a vector space

• . . .

Unfortunately, quotients can only be formed in Rocq in very specific situations,

namely when can define a function escaping the quotient (Mathcomp quotients)

2

Quotients in mathematics

Quotients are ubiquitous in mathematics:

• Construction of integers, rationals, reals

• Quotient of a ring by an ideal (e.g., Z/𝑛Z)

• Projective space of a vector space

• . . .

Unfortunately, quotients can only be formed in Rocq in very specific situations,

namely when can define a function escaping the quotient (Mathcomp quotients)

2

Quotients in mathematics

Quotients are ubiquitous in mathematics:

• Construction of integers, rationals, reals

• Quotient of a ring by an ideal (e.g., Z/𝑛Z)
• Projective space of a vector space

• . . .

Unfortunately, quotients can only be formed in Rocq in very specific situations,

namely when can define a function escaping the quotient (Mathcomp quotients)

2

Quotients in mathematics

Quotients are ubiquitous in mathematics:

• Construction of integers, rationals, reals

• Quotient of a ring by an ideal (e.g., Z/𝑛Z)
• Projective space of a vector space

• . . .

Unfortunately, quotients can only be formed in Rocq in very specific situations,

namely when can define a function escaping the quotient (Mathcomp quotients)

2

Quotients in mathematics

Quotients are ubiquitous in mathematics:

• Construction of integers, rationals, reals

• Quotient of a ring by an ideal (e.g., Z/𝑛Z)
• Projective space of a vector space

• . . .

Unfortunately, quotients can only be formed in Rocq in very specific situations,

namely when can define a function escaping the quotient (Mathcomp quotients)

2

The quotient type in type theory
General quotients can be constructed in type theory using the quotient type:

𝐴 : Type 𝑅 : 𝐴 → 𝐴 → Prop 𝑅 equiv. rel.

𝐴/𝑅 : Type

𝑡 : 𝐴

[𝑡] : 𝐴/𝑅

We also need the axiom

Q= : 𝑅 𝑥 𝑦 → [𝑥] =𝐴/𝑅 [𝑦]

for characterizing equality of 𝐴/𝑅

Problem Blocks computation, the following closed term is stuck(
match Q= ∗ : [true] =Bool/(𝜆𝑥𝑦.{∗}) [true] with
| refl → 0

)
: Nat

The approach taken by Lean, as it does not care for canonicity

3

The quotient type in type theory
General quotients can be constructed in type theory using the quotient type:

𝐴 : Type 𝑅 : 𝐴 → 𝐴 → Prop 𝑅 equiv. rel.

𝐴/𝑅 : Type

𝑡 : 𝐴

[𝑡] : 𝐴/𝑅

We also need the axiom

Q= : 𝑅 𝑥 𝑦 → [𝑥] =𝐴/𝑅 [𝑦]

for characterizing equality of 𝐴/𝑅

Problem Blocks computation, the following closed term is stuck(
match Q= ∗ : [true] =Bool/(𝜆𝑥𝑦.{∗}) [true] with
| refl → 0

)
: Nat

The approach taken by Lean, as it does not care for canonicity

3

The quotient type in type theory
General quotients can be constructed in type theory using the quotient type:

𝐴 : Type 𝑅 : 𝐴 → 𝐴 → Prop 𝑅 equiv. rel.

𝐴/𝑅 : Type

𝑡 : 𝐴

[𝑡] : 𝐴/𝑅

We also need the axiom

Q= : 𝑅 𝑥 𝑦 → [𝑥] =𝐴/𝑅 [𝑦]

for characterizing equality of 𝐴/𝑅

Problem Blocks computation, the following closed term is stuck(
match Q= ∗ : [true] =Bool/(𝜆𝑥𝑦.{∗}) [true] with
| refl → 0

)
: Nat

The approach taken by Lean, as it does not care for canonicity

3

The quotient type in type theory
General quotients can be constructed in type theory using the quotient type:

𝐴 : Type 𝑅 : 𝐴 → 𝐴 → Prop 𝑅 equiv. rel.

𝐴/𝑅 : Type

𝑡 : 𝐴

[𝑡] : 𝐴/𝑅

We also need the axiom

Q= : 𝑅 𝑥 𝑦 → [𝑥] =𝐴/𝑅 [𝑦]

for characterizing equality of 𝐴/𝑅

Problem Blocks computation, the following closed term is stuck(
match Q= ∗ : [true] =Bool/(𝜆𝑥𝑦.{∗}) [true] with
| refl → 0

)
: Nat

The approach taken by Lean, as it does not care for canonicity
3

Observational Type Theory (OTT) to the rescue
In Observational Type Theory, equality is instead eliminating using a cast operator:

𝐴, 𝐵 : Type 𝑝 : 𝐴 =Type 𝐵 𝑎 : 𝐴

cast
𝐴{𝐵
𝑝 (𝑎) : 𝐵

Crucial property of OTT Computation rules for cast never look inside eq. proofs

cast
(𝐴×𝐵){(𝐴′×𝐵′)
𝑝 ⟨𝑡1, 𝑡2⟩ −→ ⟨cast𝐴{𝐴′

𝑝.1 𝑡1, cast
𝐵{𝐵′
𝑝.2 𝑡2⟩

Thus, we can add many desirable principles without blocking computation (Pujet

and Tabareau 2022):

• funext: two functions equal iff pointwise equal

• propext: two propositions equal iff equivalent

• uip: equality is proof-irrelevant (like in usual mathematics)

• Quotient types!

4

Observational Type Theory (OTT) to the rescue
In Observational Type Theory, equality is instead eliminating using a cast operator:

𝐴, 𝐵 : Type 𝑝 : 𝐴 =Type 𝐵 𝑎 : 𝐴

cast
𝐴{𝐵
𝑝 (𝑎) : 𝐵

Crucial property of OTT Computation rules for cast never look inside eq. proofs

cast
(𝐴×𝐵){(𝐴′×𝐵′)
𝑝 ⟨𝑡1, 𝑡2⟩ −→ ⟨cast𝐴{𝐴′

𝑝.1 𝑡1, cast
𝐵{𝐵′
𝑝.2 𝑡2⟩

Thus, we can add many desirable principles without blocking computation (Pujet

and Tabareau 2022):

• funext: two functions equal iff pointwise equal

• propext: two propositions equal iff equivalent

• uip: equality is proof-irrelevant (like in usual mathematics)

• Quotient types!

4

Observational Type Theory (OTT) to the rescue
In Observational Type Theory, equality is instead eliminating using a cast operator:

𝐴, 𝐵 : Type 𝑝 : 𝐴 =Type 𝐵 𝑎 : 𝐴

cast
𝐴{𝐵
𝑝 (𝑎) : 𝐵

Crucial property of OTT Computation rules for cast never look inside eq. proofs

cast
(𝐴×𝐵){(𝐴′×𝐵′)
𝑝 ⟨𝑡1, 𝑡2⟩ −→ ⟨cast𝐴{𝐴′

𝑝.1 𝑡1, cast
𝐵{𝐵′
𝑝.2 𝑡2⟩

Thus, we can add many desirable principles without blocking computation (Pujet

and Tabareau 2022):

• funext: two functions equal iff pointwise equal

• propext: two propositions equal iff equivalent

• uip: equality is proof-irrelevant (like in usual mathematics)

• Quotient types!

4

Observational Type Theory (OTT) to the rescue
In Observational Type Theory, equality is instead eliminating using a cast operator:

𝐴, 𝐵 : Type 𝑝 : 𝐴 =Type 𝐵 𝑎 : 𝐴

cast
𝐴{𝐵
𝑝 (𝑎) : 𝐵

Crucial property of OTT Computation rules for cast never look inside eq. proofs

cast
(𝐴×𝐵){(𝐴′×𝐵′)
𝑝 ⟨𝑡1, 𝑡2⟩ −→ ⟨cast𝐴{𝐴′

𝑝.1 𝑡1, cast
𝐵{𝐵′
𝑝.2 𝑡2⟩

Thus, we can add many desirable principles without blocking computation (Pujet

and Tabareau 2022):

• funext: two functions equal iff pointwise equal

• propext: two propositions equal iff equivalent

• uip: equality is proof-irrelevant (like in usual mathematics)

• Quotient types!

4

Observational Type Theory (OTT) to the rescue
In Observational Type Theory, equality is instead eliminating using a cast operator:

𝐴, 𝐵 : Type 𝑝 : 𝐴 =Type 𝐵 𝑎 : 𝐴

cast
𝐴{𝐵
𝑝 (𝑎) : 𝐵

Crucial property of OTT Computation rules for cast never look inside eq. proofs

cast
(𝐴×𝐵){(𝐴′×𝐵′)
𝑝 ⟨𝑡1, 𝑡2⟩ −→ ⟨cast𝐴{𝐴′

𝑝.1 𝑡1, cast
𝐵{𝐵′
𝑝.2 𝑡2⟩

Thus, we can add many desirable principles without blocking computation (Pujet

and Tabareau 2022):

• funext: two functions equal iff pointwise equal

• propext: two propositions equal iff equivalent

• uip: equality is proof-irrelevant (like in usual mathematics)

• Quotient types!

4

Observational Type Theory (OTT) to the rescue
In Observational Type Theory, equality is instead eliminating using a cast operator:

𝐴, 𝐵 : Type 𝑝 : 𝐴 =Type 𝐵 𝑎 : 𝐴

cast
𝐴{𝐵
𝑝 (𝑎) : 𝐵

Crucial property of OTT Computation rules for cast never look inside eq. proofs

cast
(𝐴×𝐵){(𝐴′×𝐵′)
𝑝 ⟨𝑡1, 𝑡2⟩ −→ ⟨cast𝐴{𝐴′

𝑝.1 𝑡1, cast
𝐵{𝐵′
𝑝.2 𝑡2⟩

Thus, we can add many desirable principles without blocking computation (Pujet

and Tabareau 2022):

• funext: two functions equal iff pointwise equal

• propext: two propositions equal iff equivalent

• uip: equality is proof-irrelevant (like in usual mathematics)

• Quotient types!

4

Observational Type Theory (OTT) to the rescue
In Observational Type Theory, equality is instead eliminating using a cast operator:

𝐴, 𝐵 : Type 𝑝 : 𝐴 =Type 𝐵 𝑎 : 𝐴

cast
𝐴{𝐵
𝑝 (𝑎) : 𝐵

Crucial property of OTT Computation rules for cast never look inside eq. proofs

cast
(𝐴×𝐵){(𝐴′×𝐵′)
𝑝 ⟨𝑡1, 𝑡2⟩ −→ ⟨cast𝐴{𝐴′

𝑝.1 𝑡1, cast
𝐵{𝐵′
𝑝.2 𝑡2⟩

Thus, we can add many desirable principles without blocking computation (Pujet

and Tabareau 2022):

• funext: two functions equal iff pointwise equal

• propext: two propositions equal iff equivalent

• uip: equality is proof-irrelevant (like in usual mathematics)

• Quotient types!
4

Quotient Inductive Types (QITs)
We have quotient types, are we done?

No, we also want Quotient Inductive Types:

InductiveMSet (𝐴 : Type) : Type :=
| [] : MSet 𝐴 | _ :: _ (𝑥 : 𝐴) (𝑚 : MSet 𝐴) : MSet 𝐴

| MSet= (𝑥 𝑦 : 𝐴) (𝑚 : MSet 𝐴) : (𝑥 :: 𝑦 ::𝑚) = (𝑦 :: 𝑥 ::𝑚)

Correspond to initial models of (non-pure) algebraic theories.

Functions eliminating a QIT must respect equality:

Fixpoint sum : MSet Nat → Nat :=

match 𝑙 with

| [] → 0 | 𝑥 ::𝑚 → 𝑥 + (sum𝑚)
| MSet= 𝑥 𝑦 𝑚 → (. . .) : (𝑥 + 𝑦 + sum𝑚) = (𝑦 + 𝑥 + sum𝑚)

5

Quotient Inductive Types (QITs)
We have quotient types, are we done? No, we also want Quotient Inductive Types:

InductiveMSet (𝐴 : Type) : Type :=
| [] : MSet 𝐴 | _ :: _ (𝑥 : 𝐴) (𝑚 : MSet 𝐴) : MSet 𝐴

| MSet= (𝑥 𝑦 : 𝐴) (𝑚 : MSet 𝐴) : (𝑥 :: 𝑦 ::𝑚) = (𝑦 :: 𝑥 ::𝑚)

Correspond to initial models of (non-pure) algebraic theories.

Functions eliminating a QIT must respect equality:

Fixpoint sum : MSet Nat → Nat :=

match 𝑙 with

| [] → 0 | 𝑥 ::𝑚 → 𝑥 + (sum𝑚)
| MSet= 𝑥 𝑦 𝑚 → (. . .) : (𝑥 + 𝑦 + sum𝑚) = (𝑦 + 𝑥 + sum𝑚)

5

Quotient Inductive Types (QITs)
We have quotient types, are we done? No, we also want Quotient Inductive Types:

InductiveMSet (𝐴 : Type) : Type :=
| [] : MSet 𝐴 | _ :: _ (𝑥 : 𝐴) (𝑚 : MSet 𝐴) : MSet 𝐴

| MSet= (𝑥 𝑦 : 𝐴) (𝑚 : MSet 𝐴) : (𝑥 :: 𝑦 ::𝑚) = (𝑦 :: 𝑥 ::𝑚)

Correspond to initial models of (non-pure) algebraic theories.

Functions eliminating a QIT must respect equality:

Fixpoint sum : MSet Nat → Nat :=

match 𝑙 with

| [] → 0 | 𝑥 ::𝑚 → 𝑥 + (sum𝑚)
| MSet= 𝑥 𝑦 𝑚 → (. . .) : (𝑥 + 𝑦 + sum𝑚) = (𝑦 + 𝑥 + sum𝑚)

5

Quotient Inductive Types (QITs)
We have quotient types, are we done? No, we also want Quotient Inductive Types:

InductiveMSet (𝐴 : Type) : Type :=
| [] : MSet 𝐴 | _ :: _ (𝑥 : 𝐴) (𝑚 : MSet 𝐴) : MSet 𝐴

| MSet= (𝑥 𝑦 : 𝐴) (𝑚 : MSet 𝐴) : (𝑥 :: 𝑦 ::𝑚) = (𝑦 :: 𝑥 ::𝑚)

Correspond to initial models of (non-pure) algebraic theories.

Functions eliminating a QIT must respect equality:

Fixpoint sum : MSet Nat → Nat :=

match 𝑙 with

| [] → 0 | 𝑥 ::𝑚 → 𝑥 + (sum𝑚)
| MSet= 𝑥 𝑦 𝑚 → (. . .) : (𝑥 + 𝑦 + sum𝑚) = (𝑦 + 𝑥 + sum𝑚)

5

More QITs
Integers, rationals, . . .
Inductive Int : Type :=

| 0 : Int
| S (𝑥 : Int) : Int
| P (𝑥 : Int) : Int
| Int= (𝑥 : Int) : S (P 𝑥) = 𝑥 = P (S 𝑥)

(Free) Groups, monoids, rings, . . .
InductiveMon (𝐴 : Type) : Type :=
| 1 : Mon 𝐴 | gen (𝑎 : 𝐴) : Mon 𝐴

| _ · _ (𝑥 𝑦 : Mon 𝐴) : Mon 𝐴

| Mon1= (𝑥 : Mon 𝐴) : 1 · 𝑥 = 𝑥 = 𝑥 · 1
| Mon·/as= (𝑥 𝑦 𝑧 : Mon 𝐴) : 𝑥 · (𝑦 · 𝑧) = (𝑥 · 𝑦) · 𝑧

Syntax of prog. languages
Inductive Tm : Type :=

| S : Tm | K : Tm | _ · _ (𝑥 𝑦 : Tm) : Tm
| TmK

= (𝑥 𝑦 : Tm) : K · 𝑥 · 𝑦 = 𝑥

| TmS
= (𝑥 𝑦 𝑧 : Tm) : S · 𝑥 · 𝑦 · 𝑧 = 𝑥 · 𝑧 · (𝑦 · 𝑧)

Inductive Tm : Ty → Type :=

| true : Tm bool | false : Tm bool

| if {𝐴}(𝑥 : Tm bool) (𝑡 𝑢 : Tm 𝐴) : Tm 𝐴

| Tmif/true
= {𝐴}(𝑡 𝑢 : Tm 𝐴) : if true 𝑡 𝑢 = 𝑡

. . .

6

More QITs
Integers, rationals, . . .
Inductive Int : Type :=

| 0 : Int
| S (𝑥 : Int) : Int
| P (𝑥 : Int) : Int
| Int= (𝑥 : Int) : S (P 𝑥) = 𝑥 = P (S 𝑥)

(Free) Groups, monoids, rings, . . .
InductiveMon (𝐴 : Type) : Type :=
| 1 : Mon 𝐴 | gen (𝑎 : 𝐴) : Mon 𝐴

| _ · _ (𝑥 𝑦 : Mon 𝐴) : Mon 𝐴

| Mon1= (𝑥 : Mon 𝐴) : 1 · 𝑥 = 𝑥 = 𝑥 · 1
| Mon·/as= (𝑥 𝑦 𝑧 : Mon 𝐴) : 𝑥 · (𝑦 · 𝑧) = (𝑥 · 𝑦) · 𝑧

Syntax of prog. languages
Inductive Tm : Type :=

| S : Tm | K : Tm | _ · _ (𝑥 𝑦 : Tm) : Tm
| TmK

= (𝑥 𝑦 : Tm) : K · 𝑥 · 𝑦 = 𝑥

| TmS
= (𝑥 𝑦 𝑧 : Tm) : S · 𝑥 · 𝑦 · 𝑧 = 𝑥 · 𝑧 · (𝑦 · 𝑧)

Inductive Tm : Ty → Type :=

| true : Tm bool | false : Tm bool

| if {𝐴}(𝑥 : Tm bool) (𝑡 𝑢 : Tm 𝐴) : Tm 𝐴

| Tmif/true
= {𝐴}(𝑡 𝑢 : Tm 𝐴) : if true 𝑡 𝑢 = 𝑡

. . .

6

More QITs
Integers, rationals, . . .
Inductive Int : Type :=

| 0 : Int
| S (𝑥 : Int) : Int
| P (𝑥 : Int) : Int
| Int= (𝑥 : Int) : S (P 𝑥) = 𝑥 = P (S 𝑥)

(Free) Groups, monoids, rings, . . .
InductiveMon (𝐴 : Type) : Type :=
| 1 : Mon 𝐴 | gen (𝑎 : 𝐴) : Mon 𝐴

| _ · _ (𝑥 𝑦 : Mon 𝐴) : Mon 𝐴

| Mon1= (𝑥 : Mon 𝐴) : 1 · 𝑥 = 𝑥 = 𝑥 · 1
| Mon·/as= (𝑥 𝑦 𝑧 : Mon 𝐴) : 𝑥 · (𝑦 · 𝑧) = (𝑥 · 𝑦) · 𝑧

Syntax of prog. languages
Inductive Tm : Type :=

| S : Tm | K : Tm | _ · _ (𝑥 𝑦 : Tm) : Tm
| TmK

= (𝑥 𝑦 : Tm) : K · 𝑥 · 𝑦 = 𝑥

| TmS
= (𝑥 𝑦 𝑧 : Tm) : S · 𝑥 · 𝑦 · 𝑧 = 𝑥 · 𝑧 · (𝑦 · 𝑧)

Inductive Tm : Ty → Type :=

| true : Tm bool | false : Tm bool

| if {𝐴}(𝑥 : Tm bool) (𝑡 𝑢 : Tm 𝐴) : Tm 𝐴

| Tmif/true
= {𝐴}(𝑡 𝑢 : Tm 𝐴) : if true 𝑡 𝑢 = 𝑡

. . .

6

More QITs
Integers, rationals, . . .
Inductive Int : Type :=

| 0 : Int
| S (𝑥 : Int) : Int
| P (𝑥 : Int) : Int
| Int= (𝑥 : Int) : S (P 𝑥) = 𝑥 = P (S 𝑥)

(Free) Groups, monoids, rings, . . .
InductiveMon (𝐴 : Type) : Type :=
| 1 : Mon 𝐴 | gen (𝑎 : 𝐴) : Mon 𝐴

| _ · _ (𝑥 𝑦 : Mon 𝐴) : Mon 𝐴

| Mon1= (𝑥 : Mon 𝐴) : 1 · 𝑥 = 𝑥 = 𝑥 · 1
| Mon·/as= (𝑥 𝑦 𝑧 : Mon 𝐴) : 𝑥 · (𝑦 · 𝑧) = (𝑥 · 𝑦) · 𝑧

Syntax of prog. languages
Inductive Tm : Type :=

| S : Tm | K : Tm | _ · _ (𝑥 𝑦 : Tm) : Tm
| TmK

= (𝑥 𝑦 : Tm) : K · 𝑥 · 𝑦 = 𝑥

| TmS
= (𝑥 𝑦 𝑧 : Tm) : S · 𝑥 · 𝑦 · 𝑧 = 𝑥 · 𝑧 · (𝑦 · 𝑧)

Inductive Tm : Ty → Type :=

| true : Tm bool | false : Tm bool

| if {𝐴}(𝑥 : Tm bool) (𝑡 𝑢 : Tm 𝐴) : Tm 𝐴

| Tmif/true
= {𝐴}(𝑡 𝑢 : Tm 𝐴) : if true 𝑡 𝑢 = 𝑡

. . . 6

Metatheory of QITs in OTT

How can we know that OTT extended with QITs is well-behaved?

Strategy 1 Extend OTT with inductive scheme for QITs

Problem Inductive schemes are hard to manipulate formally

No go if we want to formally prove normalization

Strategy 2 Encode QITs using inductive types + quotient type Q,
both of which have already been studied in OTT by Pujet and Tabareau

Problem Eliminator of encoded QIT does not compute properly

Moreover, construction does not seem even possible for infinitary QITs

Our strategyExtendOTTwith a single universal QIT, capable of encoding all QITs

7

Metatheory of QITs in OTT

How can we know that OTT extended with QITs is well-behaved?

Strategy 1 Extend OTT with inductive scheme for QITs

Problem Inductive schemes are hard to manipulate formally

No go if we want to formally prove normalization

Strategy 2 Encode QITs using inductive types + quotient type Q,
both of which have already been studied in OTT by Pujet and Tabareau

Problem Eliminator of encoded QIT does not compute properly

Moreover, construction does not seem even possible for infinitary QITs

Our strategyExtendOTTwith a single universal QIT, capable of encoding all QITs

7

Metatheory of QITs in OTT

How can we know that OTT extended with QITs is well-behaved?

Strategy 1 Extend OTT with inductive scheme for QITs

Problem Inductive schemes are hard to manipulate formally

No go if we want to formally prove normalization

Strategy 2 Encode QITs using inductive types + quotient type Q,
both of which have already been studied in OTT by Pujet and Tabareau

Problem Eliminator of encoded QIT does not compute properly

Moreover, construction does not seem even possible for infinitary QITs

Our strategyExtendOTTwith a single universal QIT, capable of encoding all QITs

7

Metatheory of QITs in OTT

How can we know that OTT extended with QITs is well-behaved?

Strategy 1 Extend OTT with inductive scheme for QITs

Problem Inductive schemes are hard to manipulate formally

No go if we want to formally prove normalization

Strategy 2 Encode QITs using inductive types + quotient type Q,
both of which have already been studied in OTT by Pujet and Tabareau

Problem Eliminator of encoded QIT does not compute properly

Moreover, construction does not seem even possible for infinitary QITs

Our strategyExtendOTTwith a single universal QIT, capable of encoding all QITs

7

Metatheory of QITs in OTT

How can we know that OTT extended with QITs is well-behaved?

Strategy 1 Extend OTT with inductive scheme for QITs

Problem Inductive schemes are hard to manipulate formally

No go if we want to formally prove normalization

Strategy 2 Encode QITs using inductive types + quotient type Q,
both of which have already been studied in OTT by Pujet and Tabareau

Problem Eliminator of encoded QIT does not compute properly

Moreover, construction does not seem even possible for infinitary QITs

Our strategyExtendOTTwith a single universal QIT, capable of encoding all QITs

7

Metatheory of QITs in OTT

How can we know that OTT extended with QITs is well-behaved?

Strategy 1 Extend OTT with inductive scheme for QITs

Problem Inductive schemes are hard to manipulate formally

No go if we want to formally prove normalization

Strategy 2 Encode QITs using inductive types + quotient type Q,
both of which have already been studied in OTT by Pujet and Tabareau

Problem Eliminator of encoded QIT does not compute properly

Moreover, construction does not seem even possible for infinitary QITs

Our strategyExtendOTTwith a single universal QIT, capable of encoding all QITs

7

The plan
We have proposed a universal non-indexed QIT, adapting Fiore et al.’s QW types:

https://github.com/thiagofelicissimo/universal-QITs

Used to define various examples: multisets, SK calculus, finitely branching trees, . . .

The next steps of our work are:

1. Formulate an inductive scheme for non-indexed QITs, then prove that they

can all be encoded using our universal QIT

2. Prove that OTT + universal QIT is normalizing, and so has decidable typing

3. Prove that OTT + universal QIT is consistent (not a consequence of 2!)

From 2 and 3 we can then deduce canonicity of the theory and of encoded QITs

Once finished, move to more complex classes of types: indexed QITs and QIITs

8

https://github.com/thiagofelicissimo/universal-QITs

The plan
We have proposed a universal non-indexed QIT, adapting Fiore et al.’s QW types:

https://github.com/thiagofelicissimo/universal-QITs

Used to define various examples: multisets, SK calculus, finitely branching trees, . . .

The next steps of our work are:

1. Formulate an inductive scheme for non-indexed QITs, then prove that they

can all be encoded using our universal QIT

2. Prove that OTT + universal QIT is normalizing, and so has decidable typing

3. Prove that OTT + universal QIT is consistent (not a consequence of 2!)

From 2 and 3 we can then deduce canonicity of the theory and of encoded QITs

Once finished, move to more complex classes of types: indexed QITs and QIITs

8

https://github.com/thiagofelicissimo/universal-QITs

The plan
We have proposed a universal non-indexed QIT, adapting Fiore et al.’s QW types:

https://github.com/thiagofelicissimo/universal-QITs

Used to define various examples: multisets, SK calculus, finitely branching trees, . . .

The next steps of our work are:

1. Formulate an inductive scheme for non-indexed QITs, then prove that they

can all be encoded using our universal QIT

2. Prove that OTT + universal QIT is normalizing, and so has decidable typing

3. Prove that OTT + universal QIT is consistent (not a consequence of 2!)

From 2 and 3 we can then deduce canonicity of the theory and of encoded QITs

Once finished, move to more complex classes of types: indexed QITs and QIITs

8

https://github.com/thiagofelicissimo/universal-QITs

The plan
We have proposed a universal non-indexed QIT, adapting Fiore et al.’s QW types:

https://github.com/thiagofelicissimo/universal-QITs

Used to define various examples: multisets, SK calculus, finitely branching trees, . . .

The next steps of our work are:

1. Formulate an inductive scheme for non-indexed QITs, then prove that they

can all be encoded using our universal QIT

2. Prove that OTT + universal QIT is normalizing, and so has decidable typing

3. Prove that OTT + universal QIT is consistent (not a consequence of 2!)

From 2 and 3 we can then deduce canonicity of the theory and of encoded QITs

Once finished, move to more complex classes of types: indexed QITs and QIITs

8

https://github.com/thiagofelicissimo/universal-QITs

The plan
We have proposed a universal non-indexed QIT, adapting Fiore et al.’s QW types:

https://github.com/thiagofelicissimo/universal-QITs

Used to define various examples: multisets, SK calculus, finitely branching trees, . . .

The next steps of our work are:

1. Formulate an inductive scheme for non-indexed QITs, then prove that they

can all be encoded using our universal QIT

2. Prove that OTT + universal QIT is normalizing, and so has decidable typing

3. Prove that OTT + universal QIT is consistent (not a consequence of 2!)

From 2 and 3 we can then deduce canonicity of the theory and of encoded QITs

Once finished, move to more complex classes of types: indexed QITs and QIITs

8

https://github.com/thiagofelicissimo/universal-QITs

The plan
We have proposed a universal non-indexed QIT, adapting Fiore et al.’s QW types:

https://github.com/thiagofelicissimo/universal-QITs

Used to define various examples: multisets, SK calculus, finitely branching trees, . . .

The next steps of our work are:

1. Formulate an inductive scheme for non-indexed QITs, then prove that they

can all be encoded using our universal QIT

2. Prove that OTT + universal QIT is normalizing, and so has decidable typing

3. Prove that OTT + universal QIT is consistent (not a consequence of 2!)

From 2 and 3 we can then deduce canonicity of the theory and of encoded QITs

Once finished, move to more complex classes of types: indexed QITs and QIITs

8

https://github.com/thiagofelicissimo/universal-QITs

The plan
We have proposed a universal non-indexed QIT, adapting Fiore et al.’s QW types:

https://github.com/thiagofelicissimo/universal-QITs

Used to define various examples: multisets, SK calculus, finitely branching trees, . . .

The next steps of our work are:

1. Formulate an inductive scheme for non-indexed QITs, then prove that they

can all be encoded using our universal QIT

2. Prove that OTT + universal QIT is normalizing, and so has decidable typing

3. Prove that OTT + universal QIT is consistent (not a consequence of 2!)

From 2 and 3 we can then deduce canonicity of the theory and of encoded QITs

Once finished, move to more complex classes of types: indexed QITs and QIITs
8

https://github.com/thiagofelicissimo/universal-QITs

The ultimate goal

Once we know OTT+QITs is well-behaved, we can have Rocq with

1. funext: two functions equal iff pointwise equal

2. propext: two propositions equal iff equivalent

3. uip: equality is proof-irrelevant (like in usual mathematics)

4. (Indexed) Inductive types: Nat, List, Vec,. . .
5. Quotient types

6. Quotient Inductive Types: MSet, Int, Mon, . . .

all while preserving canonicity, consistency and decidability of typing

Implementation is already ongoing, prototype supporting 1-4 by Pujet

Thank you for your attention!

9

The ultimate goal

Once we know OTT+QITs is well-behaved, we can have Rocq with

1. funext: two functions equal iff pointwise equal

2. propext: two propositions equal iff equivalent

3. uip: equality is proof-irrelevant (like in usual mathematics)

4. (Indexed) Inductive types: Nat, List, Vec,. . .
5. Quotient types

6. Quotient Inductive Types: MSet, Int, Mon, . . .

all while preserving canonicity, consistency and decidability of typing

Implementation is already ongoing, prototype supporting 1-4 by Pujet

Thank you for your attention!

9

The ultimate goal

Once we know OTT+QITs is well-behaved, we can have Rocq with

1. funext: two functions equal iff pointwise equal

2. propext: two propositions equal iff equivalent

3. uip: equality is proof-irrelevant (like in usual mathematics)

4. (Indexed) Inductive types: Nat, List, Vec,. . .
5. Quotient types

6. Quotient Inductive Types: MSet, Int, Mon, . . .

all while preserving canonicity, consistency and decidability of typing

Implementation is already ongoing, prototype supporting 1-4 by Pujet

Thank you for your attention!
9

The universal (finitary) QIT
Sig = record {C : Type; arity : C → Nat}

Inductive Tm (Σ : Sig) (Γ : Type) : Type :=
| var (𝑥 : Γ) : Tm Σ Γ

| sym (𝑐 : Σ.C) (t : Vec (Tm Σ Γ) (Σ.arity 𝑐)) : Tm Σ Γ

EqTh Σ = record {E : Type; Ctx : E → Type; lhs, rhs : (𝑒 : E) → Tm Σ (Ctx 𝑒)}

Inductive Tm (Σ : Sig) (E : EqTh Σ) : Type :=
| sym (𝑐 : Σ.C) (t : Vec (Tm Σ E) (Σ.arity 𝑐)) : Tm Σ E
| eq (𝑒 : E .E) (𝛾 : E .Ctx 𝑒 → Tm Σ E) : (E .lhs 𝑒)⟨𝛾⟩ = (E .rhs 𝑒)⟨𝛾⟩

where _⟨_⟩ : Tm Σ Γ → (Γ → Tm Σ E) → Tm Σ E is defined by

(var 𝑥)⟨𝛾⟩ := 𝛾 𝑥 (sym 𝑐 [𝑡1, . . . , 𝑡𝑘])⟨𝛾⟩ := sym 𝑐 [𝑡1⟨𝛾⟩, . . . , 𝑡𝑘 ⟨𝛾⟩]
10

