y 4

: informatics g mathematics

The Multiverse for a more math-friendly proof
assistant

Gaetan Gilbert, Kenji Maillard, Pierre-Marie Pedrot, Loic Pujet, Matthieu Sozeau,
Nicolas Tabareau, and Eric Tanter

Liber Abaci Kick-0ff
Paris, September 20th 2022

What's not math-friendly in
Coq!

Quotients are pervasively used in mathematics but hard to
represent in (intentional) type theories.

Functional extensionality 1s an axiom!
Equivalent propositions are not equal?

One must resort to boring compatibility proofs or

parametricity to derive basic results, e.g.
(forall x, f x =g x) -> forall 1, map f 1 = map g 1.
This requires a specific rewriting tactic to make it

transparent to the user.

Equality of co-inductive types 1s just plain wrong! It
should just be bisimilarity.

l&t’lt’a/- The Multiverse for a more math-friendly proof assistant

Quotients

Pervasive 1n mathematics, easy in set theory, hard in
type theories:

- Extensional Type Theory: easy to add quotients, but
lose decidable type-checking.

- Cubical Type Theory: radical change of foundation,
introducing the concept of dimensions and another
algebra of faces to an already complex system.

Su
re
im

oports quotients naturally, but with a very different
oresentation of propositions (hProp), not

rredicative nor erasable.

Can we do something about 1t without changing the theory
drastically?

.&Z’Z/a/— The Multiverse for a more math-friendly proof assistant

Workarounds in Coq

- Mathematical Components
Restrict to effective quotients, e.g. quotients
definable by a total function computing a canonical
element for each equivalence class.
Not a problem for math-comp as i1t is developing
mathematics on finite groups etc.. but does not scale
to more abstract math settings. Requires some
ingenuity to make it work seamlessly for users as
well.

- Lean
Axiomatize quotients, losing metatheoretic properties
(either subject reduction or normalization/
decidability). Kind of enforces a classical
viewpoint. Could be adapted to Coq but some reticence
for a less-than-perfect solution.

.&z'z/a,- The Multiverse for a more math-friendly proof assistant

Observational Type Theory
to the Rescue

Observational Equality Now! Altenkirch, McBride and Swiersta, PLPV 2007

Inspired from the setoid model of Hofmann & Streicher, just
like HoTT 1s inspired by their groupoid model.

Regained a lot of attention recently:
XTT - Sterling, Angiuli and Gratzer, FSCD 2019
SetoidTT - Altenkirch, Boulier, Kaposi and Tabareau, MPC 2019
TTobs _ pujet and Tabareau, POPL 2022

A more “familiar-looking” foundation than cubical type theory,
still conjectured to 1ift to higher dimensions:

Towards Higher Observational Type Theory -
Altenkirch, Kaposi and Schulmann, TYPES 2022

I&L’Zé'a/- The Multiverse for a more math-friendly proof assistant

Observational Type Theory

Based on a definitionally proof-irrelevant sort (Prop) and
a predicative hierarchy Type(1).

Propositional equality on terms is defined by induction on
their type, e.g.:

f={Vvx:A B}y f>=Vx: A, fx=4{B x} f’ x

(= 1s propositional equality and = is definitional equality in the following)

As well as their shape, for positive types:

I S

b

nNnnNnooS
X X

X - -

= X

=> Definitional 1injectivity/discrimination and pattern-
matching simplification.

.&z'u'a,- The Multiverse for a more math-friendly proof assistant

Observational Type Theory

This allows to introduce new type constructors with a
tailor-made equality. E.g. subsets and quotients:

s =_{{x : A | B}} s’ =s.1 =_{A} s’.1

Quotients A // R for the quotient of A by an equivalence R

(proof terms omitted here)

A term constructor: - A ->A// R

An elimination principle:
Q : A// R -> Type q:Vx:A QC¢(X)
ap : Vxy : A, RXy ->qgx=qYy

QelimQqgagp : VXx : A// R, QX

Qelim Q g gp (1] X) = q X
And equality: x =_{A // R} y

1

A

X
<

.&z'u'a,- The Multiverse for a more math-friendly proof assistant

T Tobs

Pujet and Tabareau prove consistency of the theory, decidability
of type checking, and canonicity for computational objects

(e.g. natural numbers).

There 1s ABSOLUTELY NO computation in proofs. TTobs can hence be
extended with any consistent propositional axiom and still
compute. Even classical ones!

Observational Equality: Now for Good

LOIC PUJET, Inria, France
NICOLAS TABAREAU, Inria, France

Building on the recent extension of dependent type theory with a universe of definitionally proof-irrelevant
types, we introduce TTPS, a new type theory based on the setoidal interpretation of dependent type theory.
TTObs equips every type with an identity relation that satisfies function extensionality, propositional exten-
sionality, and definitional uniqueness of identity proofs (UIP). Compared to other existing proposals to enrich
dependent type theory with these principles, our theory features a notion of reduction that is normalizing
and provides an algorithmic canonicity result, which we formally prove in AGpA using the logical relation
framework of Abel et al. Our paper thoroughly develops the meta-theoretical properties of TT°PS, such as
the decidability of the conversion and of the type checking, as well as consistency. We also explain how to
extend our theory with quotient types, and we introduce a setoidal version of Swan’s Id types that turn it into
a proper extension of MLTT with inductive equality.

.&z'u'a,- The Multiverse for a more math-friendly proof assistant

What's not math-friendly in
T Tobs?

Quotients are fine

Functional extensionality is by definition

Equivalent propositions are equal

Equality of co-inductive types 1is plain bisimilarity

Equality 1s 1itself proof-irrelevant (no higher-
dimensional reasoning)

Caveat indexed inductive types are (rightfully) a bit
delicate

So, let’s have 1t?!

.&zzz’a,- The Multiverse for a more math-friendly proof assistant

Very well, let’s implement
it!

Not so fast!

Changing a type theory and implementation from the ground
up 1s not easy, let’s see what we need:

- A definitionally proof-irrelevant sort

- A new universe hierarchy of setoidal types

- An extension of the system with new primitives and
reduction rules

.&zzz’a,- The Multiverse for a more math-friendly proof assistant

Universes

A universe classifies a collection of types and their
closure properties.

Two main examples 1n Coq:

-Prop: impredicative, 1.e. all quantifications allowed
- Type(1): predicative, 1.e. raises levels

Ad-hoc rules to interact between them, e.g. singleton

elimination from proofs in Prop to Type and the
Prop <= Type cumulativity rule.

.&Z’Zfa/— The Multiverse for a more math-friendly proof assistant

SProp

SProp 1s a variant of Prop with definitional proof-
1rrelevance.

Definitional Proof-Irrelevance without K*

GAETAN GILBERT, Gallinette Project-Team, Inria, France
JESPER COCKX, Chalmers / Gothenburg University, Sweden
MATTHIEU SOZEAU, Pi.R2 Project-Team, Inria and IRIF, France
NICOLAS TABAREAU, Gallinette Project-Team, Inria, France

Definitional equality—or conversion—for a type theory with a decidable type checking is the simplest tool to
prove that two objects are the same, letting the system decide just using computation. Therefore, the more
things are equal by conversion, the simpler it is to use a language based on type theory. Proof-irrelevance,
stating that any two proofs of the same proposition are equal, is a possible way to extend conversion to make
a type theory more powerful. However, this new power comes at a price if we integrate it naively, either
by making type checking undecidable or by realizing new axioms—such as uniqueness of identity proofs
(UIP)—that are incompatible with other extensions, such as univalence. In this paper, taking inspiration from
homotopy type theory, we propose a general way to extend a type theory with definitional proof irrelevance,
in a way that keeps type checking decidable and is compatible with univalence. We provide a new criterion to
decide whether a proposition can be eliminated over a type (correcting and improving the so-called singleton
elimination of Coq) by using techniques coming from recent development on dependent pattern matching
without UIP. We show the generality of our approach by providing implementations for both Coq and Agda,
both of which are planned to be integrated in future versions of those proof assistants.

Adding that new sort to Coq was non-trivial (done by
Gilbert)
- SProp: impredicative, erased, no singleton elimination,
only empty elimination, restricted inductive types
- SProp(1) (in Agda): predicative variant
Again, ad-hoc rules of interaction between Prop and Type.

lrzia— The Multiverse for a more math-friendly proof assistant

Ad-hoc implementations

Cog was not designed to deal with multiple different
hierarchies from the beginning. High cost of integration
payed for SProp.

This shows at the user level:
- Type inference prefers predicativity by default, e.g.:

forall P, P -> P \/ P

At the theoretical level as well..

.&Z’Z/a/— The Multiverse for a more math-friendly proof assistant

Ad-hoc theory, less ad-hoc

There is no general theory or framework for combining two
or more universes with their specific rules, i.e. for
modular consistency proofs.

Can we do better? We hope so!

The Multiverse: Logical Modularity for Proof Assistants

KENJI MAILLARD, Gallinette Project-Team, Inria, France

NICOLAS MARGULIES, ENS Paris-Saclay & Gallinette Project-Team, Inria, France
MATTHIEU SOZEAU, Gallinette Project-Team, Inria, France

NICOLAS TABAREAU, Gallinette Project-Team, Inria, France

ERIC TANTER, PLEIAD Lab, Computer Science Department (DCC), University of Chile, Chile

Mainly geared towards having the flexibility of adding
new sorts to a system along with constants and reduction
rules and getting modular canonicity and decidability of
type checking proofs (using state of the art logical
relation techniques).

I&I/Zé’a/— The Multiverse for a more math-friendly proof assistant

The Multiverse

MUuTT scales to adding Prop, SProp, and the exceptional type
theory of Pédrot and Tabareau (which has 3 different
universe hierarchies). Its implementation in Cog can reuse
the groundwork of Gilbert.

A basis for new experiments, 1n particular:
- Implementing and verifying the meta theory of TTobs

together with other sorts.

- A special CProp with “classical” quotients a la Lean

- Using the Keller-Lasson sort hierarchy for
parametricity and better erasability control (erasure of
natural number 1indices for example).

MuTT allows to specify cleanly the possible communication
between universe hierarchies, 1f available.

lbz’z/a/- The Multiverse for a more math-friendly proof assistant

Sort polymorphism

Once we have a theory with lots of different sorts
available, we will want polymorphic quantification
over them. Justified by targeting MuTT.

It seems like a relatively straightforward generalisation
of universe polymorphism, with new “sort” and elimination

constraints rather than just “universe level”
constraints. We have focused on the target MuTT for now.

When implemented right, will give the right answer to

forall P, P -> P \/ P

And whatever new sort we might want to add, have a single:
map : forall (U : Univ) (A B : U) (f : A -> B)
(L : List A), list B.

.&t’lt’a/— The Multiverse for a more math-friendly proof assistant

Work plan

i
1
|
|
1
|
|
1
|
|
1
|
|
1
|
|
1
|
|
1
|
|
1
|
|
1
|
|
1
4

Multiverse Type Theory

(w/ MetaCoq and Agda proofs,
Coq prototype)

v IH = = = = =H = = 3
A = == = = = = = =

Instance

Targets

Sort polymorphism
(w/ Coq prototype)

'----~
Il = = = = = = =

As an alternative, cooperating universe

TTobs in Coq E

I&L’Zé'a/- The Multiverse for a more math-friendly proof assistant

