
Liber Abaci Kick-Off

Paris, September 20th 2022

The Multiverse for a more math-friendly proof
assistant

Gaëtan Gilbert, Kenji Maillard, Pierre-Marie Pédrot, Loïc Pujet, Matthieu Sozeau,
Nicolas Tabareau, and Éric Tanter

The Multiverse for a more math-friendly proof assistant
 2

Quotients are pervasively used in mathematics but hard to
represent in (intentional) type theories.

Functional extensionality is an axiom!

Equivalent propositions are not equal?

 One must resort to boring compatibility proofs or
parametricity to derive basic results, e.g.  
(forall x, f x = g x) -> forall l, map f l = map g l.  
This requires a specific rewriting tactic to make it

 transparent to the user.

Equality of co-inductive types is just plain wrong! It
should just be bisimilarity.

What’s not math-friendly in
Coq?

The Multiverse for a more math-friendly proof assistant
 3

Pervasive in mathematics, easy in set theory, hard in
type theories:

 - Extensional Type Theory: easy to add quotients, but
lose decidable type-checking.

 - Cubical Type Theory: radical change of foundation,
introducing the concept of dimensions and another
algebra of faces to an already complex system.  
Supports quotients naturally, but with a very different
representation of propositions (hProp), not
impredicative nor erasable.

Can we do something about it without changing the theory
drastically?

Quotients

The Multiverse for a more math-friendly proof assistant
 4

- Mathematical Components  
Restrict to effective quotients, e.g. quotients
definable by a total function computing a canonical
element for each equivalence class.  
Not a problem for math-comp as it is developing
mathematics on finite groups etc… but does not scale
to more abstract math settings. Requires some
ingenuity to make it work seamlessly for users as
well.

- Lean  
Axiomatize quotients, losing metatheoretic properties
(either subject reduction or normalization/
decidability). Kind of enforces a classical
viewpoint. Could be adapted to Coq but some reticence
for a less-than-perfect solution.

Workarounds in Coq

The Multiverse for a more math-friendly proof assistant
 5

Observational Equality Now! Altenkirch, McBride and Swiersta, PLPV 2007

Inspired from the setoid model of Hofmann & Streicher, just
like HoTT is inspired by their groupoid model.

Regained a lot of attention recently:

 XTT - Sterling, Angiuli and Gratzer, FSCD 2019

 SetoidTT - Altenkirch, Boulier, Kaposi and Tabareau, MPC 2019

 TTobs - Pujet and Tabareau, POPL 2022

A more “familiar-looking” foundation than cubical type theory,
still conjectured to lift to higher dimensions:

 Towards Higher Observational Type Theory -  
Altenkirch, Kaposi and Schulmann, TYPES 2022

Observational Type Theory
to the Rescue

The Multiverse for a more math-friendly proof assistant
 6

Based on a definitionally proof-irrelevant sort (Prop) and
a predicative hierarchy Type(i).

Propositional equality on terms is defined by induction on
their type, e.g.:

f =_{∀ x : A, B} f’ ≡ ∀ x : A, f x =_{B x} f’ x

 (= is propositional equality and ≡ is definitional equality in the following)  

As well as their shape, for positive types:

0 = 0 ≡ ⊤
0 = S x ≡ ⊥
S x = 0 ≡ ⊥
S x = S x’ ≡ x = x’

=> Definitional injectivity/discrimination and pattern-
matching simplification.

Observational Type Theory

The Multiverse for a more math-friendly proof assistant
 7

This allows to introduce new type constructors with a
tailor-made equality. E.g. subsets and quotients:

s =_{{x : A | B}} s’ ≡ s.1 =_{A} s’.1

Quotients A // R for the quotient of A by an equivalence R

 (proof terms omitted here)

A term constructor: inj : A -> A // R

An elimination principle:

 Q : A // R -> Type q : ∀ x : A, Q (inj x)

 qp : ∀ x y : A, R x y -> q x = q y

 —————————

 Qelim Q q qp : ∀ x : A // R, Q x
 Qelim Q q qp (inj x) ≡ q x
And equality: inj x =_{A // R} inj y ≡ R x y

Observational Type Theory

The Multiverse for a more math-friendly proof assistant
 8

Pujet and Tabareau prove consistency of the theory, decidability
of type checking, and canonicity for computational objects
(e.g. natural numbers).

There is ABSOLUTELY NO computation in proofs. TTobs can hence be
extended with any consistent propositional axiom and still
compute. Even classical ones!

TTobs

The Multiverse for a more math-friendly proof assistant
 9

Quotients are fine

Functional extensionality is by definition

Equivalent propositions are equal

Equality of co-inductive types is plain bisimilarity

Equality is itself proof-irrelevant (no higher-
dimensional reasoning)

Caveat indexed inductive types are (rightfully) a bit
delicate

So, let’s have it?!

What’s not math-friendly in
TTobs?

The Multiverse for a more math-friendly proof assistant
 10

Not so fast!

Changing a type theory and implementation from the ground

up is not easy, let’s see what we need:

- A definitionally proof-irrelevant sort

- A new universe hierarchy of setoidal types

- An extension of the system with new primitives and  

reduction rules

Very well, let’s implement
it!

The Multiverse for a more math-friendly proof assistant
 11

A universe classifies a collection of types and their
closure properties.

Two main examples in Coq:

- Prop: impredicative, i.e. all quantifications allowed

- Type(i): predicative, i.e. raises levels

Ad-hoc rules to interact between them, e.g. singleton
elimination from proofs in Prop to Type and the  
Prop <= Type cumulativity rule.

Universes

The Multiverse for a more math-friendly proof assistant
 12

SProp is a variant of Prop with definitional proof-
irrelevance.

Adding that new sort to Coq was non-trivial (done by
Gilbert)

- SProp: impredicative, erased, no singleton elimination,
only empty elimination, restricted inductive types

- SProp(i) (in Agda): predicative variant

Again, ad-hoc rules of interaction between Prop and Type.

SProp

The Multiverse for a more math-friendly proof assistant
 13

Coq was not designed to deal with multiple different
hierarchies from the beginning. High cost of integration
payed for SProp.

This shows at the user level:

 - Type inference prefers predicativity by default, e.g.:

 forall P, P -> P \/ P

At the theoretical level as well…

Ad-hoc implementations

The Multiverse for a more math-friendly proof assistant
 14

There is no general theory or framework for combining two
or more universes with their specific rules, i.e. for
modular consistency proofs.

 Can we do better? We hope so!

 Mainly geared towards having the flexibility of adding
new sorts to a system along with constants and reduction
rules and getting modular canonicity and decidability of
type checking proofs (using state of the art logical
relation techniques).

Ad-hoc theory, less ad-hoc

The Multiverse for a more math-friendly proof assistant
 15

MuTT scales to adding Prop, SProp, and the exceptional type

theory of Pédrot and Tabareau (which has 3 different

universe hierarchies). Its implementation in Coq can reuse

the groundwork of Gilbert.

A basis for new experiments, in particular:

 - Implementing and verifying the meta theory of TTobs
together with other sorts.

 - A special CProp with “classical” quotients à la Lean  
- Using the Keller-Lasson sort hierarchy for
parametricity and better erasability control (erasure of
natural number indices for example).

MuTT allows to specify cleanly the possible communication
between universe hierarchies, if available.

The Multiverse

The Multiverse for a more math-friendly proof assistant
 16

Once we have a theory with lots of different sorts
available, we will want polymorphic quantification  
over them. Justified by targeting MuTT.

It seems like a relatively straightforward generalisation
of universe polymorphism, with new “sort” and elimination
constraints rather than just “universe level”
constraints. We have focused on the target MuTT for now.

When implemented right, will give the right answer to

 forall P, P -> P \/ P

And whatever new sort we might want to add, have a single:

 map : forall (U : Univ) (A B : U) (f : A -> B)  
 (l : list A), list B.

Sort polymorphism

The Multiverse for a more math-friendly proof assistant
 17

Multiverse Type Theory 
(w/ MetaCoq and Agda proofs,  

Coq prototype)

Sort polymorphism 
(w/ Coq prototype)

Work plan

TTobs in Coq 
As an alternative, cooperating universe

Targets Instance

