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Quotients are pervasively used in mathematics but hard to 
represent in (intentional) type theories.


Functional extensionality is an axiom!

Equivalent propositions are not equal?


  One must resort to boring compatibility proofs or 
parametricity to derive basic results, e.g.  
(forall x, f x = g x) -> forall l, map f l = map g l.  
This requires a specific rewriting tactic to make it


  transparent to the user.


Equality of co-inductive types is just plain wrong! It 
should just be bisimilarity.


What’s not math-friendly in 
Coq?
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Pervasive in mathematics, easy in set theory, hard in 
type theories:


 - Extensional Type Theory: easy to add quotients, but 
lose decidable type-checking.


 - Cubical Type Theory: radical change of foundation, 
introducing the concept of dimensions and another 
algebra of faces to an already complex system.  
Supports quotients naturally, but with a very different 
representation of propositions (hProp), not 
impredicative nor erasable.


Can we do something about it without changing the theory 
drastically?

Quotients
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-  Mathematical Components  
Restrict to effective quotients, e.g. quotients 
definable by a total function computing a canonical 
element for each equivalence class.  
Not a problem for math-comp as it is developing 
mathematics on finite groups etc… but does not scale 
to more abstract math settings. Requires some 
ingenuity to make it work seamlessly for users as 
well.


-  Lean  
Axiomatize quotients, losing metatheoretic properties 
(either subject reduction or normalization/
decidability). Kind of enforces a classical 
viewpoint. Could be adapted to Coq but some reticence 
for a less-than-perfect solution.

Workarounds in Coq
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Observational Equality Now! Altenkirch, McBride and Swiersta, PLPV 2007


Inspired from the setoid model of Hofmann & Streicher, just 
like HoTT is inspired by their groupoid model.


Regained a lot of attention recently:

    XTT - Sterling, Angiuli and Gratzer, FSCD 2019

    SetoidTT - Altenkirch, Boulier, Kaposi and Tabareau, MPC 2019

    TTobs - Pujet and Tabareau, POPL 2022


A more “familiar-looking” foundation than cubical type theory, 
still conjectured to lift to higher dimensions:


  Towards Higher Observational Type Theory -  
Altenkirch, Kaposi and Schulmann, TYPES 2022

Observational Type Theory 
to the Rescue
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Based on a definitionally proof-irrelevant sort (Prop) and 
a predicative hierarchy Type(i).


Propositional equality on terms is defined by induction on 
their type, e.g.:


f =_{∀ x : A, B} f’ ≡ ∀ x : A, f x =_{B x} f’ x

           (= is propositional equality and ≡ is definitional equality in the following)  

As well as their shape, for positive types:


0 = 0      ≡ ⊤
0 = S x    ≡ ⊥
S x = 0    ≡ ⊥
S x = S x’ ≡ x = x’


=> Definitional injectivity/discrimination and pattern-
matching simplification.


Observational Type Theory
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This allows to introduce new type constructors with a 
tailor-made equality. E.g. subsets and quotients:


s =_{{x : A | B}} s’ ≡ s.1 =_{A} s’.1


Quotients A // R for the quotient of A by an equivalence R

    (proof terms omitted here)


A term constructor:     inj : A -> A // R


An elimination principle:

  Q : A // R -> Type       q : ∀ x : A, Q (inj x)  

  qp : ∀ x y : A, R x y -> q x = q y

  ————————— 

  Qelim Q q qp : ∀ x : A // R, Q x
  Qelim Q q qp (inj x) ≡ q x
And equality: inj x =_{A // R} inj y ≡ R x y


Observational Type Theory
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Pujet and Tabareau prove consistency of the theory, decidability 
of type checking, and canonicity for computational objects 
(e.g. natural numbers).


There is ABSOLUTELY NO computation in proofs. TTobs can hence be 
extended with any consistent propositional axiom and still 
compute. Even classical ones!

TTobs
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Quotients are fine

Functional extensionality is by definition

Equivalent propositions are equal

Equality of co-inductive types is plain bisimilarity

Equality is itself proof-irrelevant (no higher-
dimensional reasoning)

Caveat indexed inductive types are (rightfully) a bit 
delicate


So, let’s have it?!

What’s not math-friendly in 
TTobs?
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Not so fast!


Changing a type theory and implementation from the ground

up is not easy, let’s see what we need:


- A definitionally proof-irrelevant sort

- A new universe hierarchy of setoidal types

- An extension of the system with new primitives and  

reduction rules


Very well, let’s implement 
it!
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A universe classifies a collection of types and their 
closure properties.


Two main examples in Coq:


- Prop: impredicative, i.e. all quantifications allowed 

- Type(i): predicative, i.e. raises levels


Ad-hoc rules to interact between them, e.g. singleton 
elimination from proofs in Prop to Type and the  
Prop <= Type cumulativity rule.

Universes
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SProp is a variant of Prop with definitional proof-
irrelevance.


Adding that new sort to Coq was non-trivial (done by 
Gilbert)


- SProp: impredicative, erased, no singleton elimination, 
only empty elimination, restricted inductive types


- SProp(i) (in Agda): predicative variant

Again, ad-hoc rules of interaction between Prop and Type.


SProp
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Coq was not designed to deal with multiple different 
hierarchies from the beginning. High cost of integration 
payed for SProp.


This shows at the user level:

  - Type inference prefers predicativity by default, e.g.:

  

                   forall P, P -> P \/ P


At the theoretical level as well…


Ad-hoc implementations
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There is no general theory or framework for combining two 
or more universes with their specific rules, i.e. for 
modular consistency proofs.


  Can we do better? We hope so!


 

  

  Mainly geared towards having the flexibility of adding 
new sorts to a system along with constants and reduction 
rules and getting modular canonicity and decidability of 
type checking proofs (using state of the art logical 
relation techniques).

Ad-hoc theory, less ad-hoc
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MuTT scales to adding Prop, SProp, and the exceptional type

theory of Pédrot and Tabareau (which has 3 different

universe hierarchies). Its implementation in Coq can reuse

the groundwork of Gilbert.


A basis for new experiments, in particular: 

  - Implementing and verifying the meta theory of TTobs 
together with other sorts.


  - A special CProp with “classical” quotients à la Lean  
- Using the Keller-Lasson sort hierarchy for 
parametricity and better erasability control (erasure of 
natural number indices for example).


MuTT allows to specify cleanly the possible communication 
between universe hierarchies, if available.

The Multiverse
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Once we have a theory with lots of different sorts 
available, we will want polymorphic quantification  
over them. Justified by targeting MuTT.


It seems like a relatively straightforward generalisation 
of universe polymorphism, with new “sort” and elimination  
constraints rather than just “universe level” 
constraints. We have focused on the target MuTT for now.


When implemented right, will give the right answer to 


  forall P, P -> P \/ P


And whatever new sort we might want to add, have a single:

  map : forall (U : Univ) (A B : U) (f : A -> B)  
  (l : list A), list B.

Sort polymorphism
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Multiverse Type Theory 
(w/ MetaCoq and Agda proofs,  

Coq prototype)

Sort polymorphism 
(w/ Coq prototype)


Work plan

TTobs in Coq 
As an alternative, cooperating universe

Targets Instance


