
 1 / 23

JsCoq: Lessons and UI Perspectives

Emilio Jesús Gallego Arias

LiberAbaci Kick-Off Meeting
Paris, September 20th 2022

 2 / 23

jsCoq’s Early History

JsCoq’s: from toy to research platform

2013: Teaching assistant a Upenn, lit. programming
2015: Sends Coq to js_of_ocaml as a joke
2015: First version thanks to the CUDW (P. Jouvelot)
2015: Development of modern interface (B. Pin)
2015: Prime numbers example & packages
2016: Current protocol (C. Pit-Claudel)

“Opinionated” from the start, experimental

 3 / 23

Original Design Philosophy

Interactive Literate Programming & Proving

Document at the center
start from a document, which is then instrumented

Lightweight
keep it simple, maintainable, standards-based

Server-less
servers disappear, self-contained stays

Not quite a “computational notebook”
More like https://eloquentjavascript.net/

 4 / 23

2016-2019: Stagnation

Ninety–ninety rule: First 90% of the code = first 90% of
dev time; last 10% of the code = other 90% of dev time

Issues where varied:
Platform: Browsers + js_of_ocaml (not wasm)
Focus: Not my main research project
Coq: Coq’s technical debt bit hard! Lack of direction.
Expertise: I knew little about UI programming, etc...
Users: Barrier to contributions / lack interest

 Quite frustrating “almost ready” state

 5 / 23

2019-2022: Shachar’s Epoch

“Mega-PR with a slew of new features #40”
 [Quite a long list of improvements and fixes]

● Better runtime model, port to WASM, worker by default

● UI improvements (company, inspect, render, completion)

● Better package management and meta-data, lazy loading
● New instrumentation for coqdoc documents

● Node and npm support, jscoq github organization

We consider the tool “mature” now!

 6 / 23

Positives and Negatives

What worked well?
What did not?

● (+) Design Principles: Maintenability, stability, experiments

● (–) Coq: API and design still way behind “modern” approaches

● (–) User Workflow: Not adapted to document writing practice
● (–) Tooling: Required a costly, painful rewrite (ongoing)

● (+) Platform/potential: Very valious feedback and ideas

After 7 years, we finally have a good
idea on how to do much better

UI Work
Is not forgiving

Requires deep rework
Not easy to get help

 7 / 23

Updating Assumptions: 2019-2022
2019: Environments for Large-Scale Proof Development
Focus on advanced proof engineers, multi-system

● Coq’s Continuous Integration & Industrial Build Systems (creator & maintainer)

> 3 million lines of Specs and Proofs
● Complex interop with Mach. Learning / Soft. Eng. : document matters!

Online Collaboration + Formal Mathematics more important!
● From advanced proof engineers to advanced mathematicians
● Essential feedback from Inria/IRIF, nLab and teaching community

2022: From mathematical to formal documents
Focus on collaboration, evolution of documents

ANR CoREACT

 8 / 23

Have we reached a Critical Point?

● LaTeX / Literate Programming: Stacks
● Education for Maths: Edukera, WaterProof
● Semantic-Aware, Interactive: Nota, ScholarPhi, Jupyter, Curve
● Structure-Aware: Hazelnut, Actema
● Interactive Documentation: Alectryon
● Self-contained formal documents: jsCoq, Holbert

How far from an integral solution?

Recent times have seen a proliferation of formal and
semi-formal collaborative math writing systems

 9 / 23

We have reached a Critical Point

Current solutions don’t address current needs

● Jupyter Notebooks: Great for computational content, falls
short for general verified math and software

● Overleaf, Wikis, Stacks: Don’t integrate with tools that
can understand and validate content

● Traditional ITPs (Coq, Lean, Isabelle,...): Lack
accessibility, collaboration features

The area has become a very hot topic in the last year

 10 / 23

jscoq.wiki: a formally-verifiable Wiki!

● jsCoq successful project, but many needs not addressed

● git-based, new rendering engine to match new model

● Entry point for H.C.I. research collaborations and experiments

● Open to other tools in the eco-system!

● Catala, formalized tax code and law, Easycrypt, formal
Crypto, Lambdapi, logical framework with rewriting

jsCoq + community feedback = jscoq.wiki!
Documents = math writing + collaboration + verification

Scope and problematics of user interaction data-gathering still
under discussion, previous experiments smaller scale (CPP2019)

 11 / 23

Navigating jscoq.wiki

Flèche: hybrid document model and validation, beyond Coq
 [incremental multi-layered model, incremental meta-data handling, whole project]

coq-lsp: Flèche + Coq Layout Engine + SerAPI + Coq.dev
 [glue for display, reworked APIs, and document layer, target VsCode (also emacs!)]

jscoq.wiki: coq-lsp + Curvenote (prosemirror-based)
 [HCI research, collaborative editing, most accessible point for users and educators]

Several Independent Components, Unified Architecture
Target a comprehensive solution for the Coq community

Despite our best practices, still a complex and big project map,
pushing the state of the art at several fronts

[jointly with S. Itzhaky, Ali Caglayan,
Dune team, Deducteam, Ram R,, ...]

Usable today, first release in a matter of days

 12 / 23

LiberAbaci: Research Challenges

Core focus: PhD in Programming Languages
Secondary focus: interactions with HCI

Dynamic model subsumes different roles of document data
Exercises, plots (à la Jupyter / Coq-Interval) etc...

● PL: Formal extension of type theory towards:

● Richer mathematical vernacular; logical, meta-logical, human level
● Layered vernacular: Allow different languages and versions to co-exist
● (Dynamic) Incremental and soft checking algorithms (DOM/React)

● Document evolution and collaboration: semantic CRDTs and merge

● PL+HCI: Incremental Reactive Elaboration. Enable exploration!

● HCI: Quantify and understand user experience, A/B testing

[All objects are handled uniformly]

 13 / 23

LiberAbaci: Engineering Challenges

● Meta-data organization: coq-db
● Library organization and maintenance: coq-universe / dune
● Web Development: Curvenote / coq-layout-engine

● Tool integration: Build on the dynamic document interpretation

● Standards: LSP, Web Components, OCaml 5
● User-support, coordination beyond Coq, educator feedback

Development of the Coq System: OCaml
Development of Interfaces: TypeScript

Dissemination and Formation essential activities too

 14 / 23

Demos and Questions!
Thank you!

For more technical details join the
upcoming UI Working Group

 15 / 23

More on Flèche

● Essential features: dynamic DAG (== monad)

● All objects live in the same graph, egalitarian

● Good understanding of performance metrics

● Structural view, computational view

Result of 5 years of research: still not in final form
Main influences: Isabelle, Dune, Dedukti (thanks to them)

Incremental computation has large tradeoffs theory/practice

 16 / 23

CurveNote

● Extensible document schema

● Collaboration built-in, in a “classical sense”

● Fits very well with our goals

● Provides more than one document workflow

● Several import / export methods, main one MysT Markdown

Platform for online scientific writing
Based on ProseMirror, well-proven, already used by us

Even if pretty minimalistic, still a complex piece of SW

 17 / 23

Improving Coq’s Printing
Coq’s current printing system still textual
Roots on console-based interaction

Main problems: 1-dimensional layout, lack of meta-data

 18 / 23

The BoxModel.t printer

type t =
 | Variable of string
 | Constant of string
 | Identifier of Id.t
 | Sort of string list
 | App of { fn : t
 ; impl : t list
 ; argl : t list
 }
 | Abs of { kind : abs_kind; binderl : t list; v : t }
 | Let of { lhs : t; rhs : t; typ : t option; v : t }
 | Notation of
 { key : string
 ; args : t list
 ; raw : t
 }

module Id : sig
 type t =
 { relative : string
 ; absolute : string option
 }
end

Adopt as output a LaTeX/HTML box model
Plus attach semantic information à la Isabelle

 19 / 23

Rendering to Web Components

Standard by Google, 2015, well supported
Allows to define custom tags in the DOM

● <coq-notation raw=”...”></coq-notation>
● <coq-app>...</coq-app>
● <coq-binder-list> ... </coq-binder-list>
● Reusable components, shadow-DOM
● Class based: extend <coq-notation> for your purposes!

● Programmable with JavaScript / TypeScript

In alpha stage, collaboration with Actema as to define
an interactive, 2-way model

 20 / 23

Other (Applied) Challenges
 Installing things!
 Libraries that don’t work / outdated proofs

● Searching for things without success

● Bad display / notations
● Boilerplate / trivial proofs

● Synchronization / merging problems

● Lack of documentation
● Dumb or outdated interfaces

A mix of Social, Research, and Engineering Problems!

 21 / 23

Scaling Formal Knowledge is Hard

● Validity: complexity beyond human reach
● reviewer time
● definition size and spread

● Accessibility: hard to understand and create
● organization of knowledge
● complex tools, complex content

● Coordination: The Mythical Man-Month
● larger teams become less effective
● social issues become apparent

 22 / 23

Our Answer: jsCoq.wiki

1983: Coq

Formal logic and Proof Assistants

Mathematical Writing

Collaborative Knowledge

1970: LaTeX 2000: MathML

1969: Internet

2001: Wikipedia

2012: Z31936: Gentzen 2008: 4 CT 2018: mathlib

2005: Git

2009: MathJax

1994: NetScape

2008: GitHub

2001: Jupyter

CollaCoq

 23 / 23

Our Answer: jsCoq.wiki

Math writing

Formalization

Collaboration

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23

