
Typechecking of Overloading
in Mechanized Mathematics and Programming Languages

Arthur Charguéraud
with Martin Bodin, Louis Riboulet, et Jana Dunfield

Inria

March 12th, 2025

1 / 24

Mathematics : overloaded symbols

𝑥+ 𝑦 vs 𝑥 +Z 𝑦

∑︁
𝑑∈{𝑖,2𝑖}

∑︁
𝑘∈−6..7

3 · 𝑒
𝑑·𝜋
8 ·𝑀2·𝑘2 ·𝑁

Three centuries of mathematics...
but where are the typing rules for overloading resolution???

Needed to mechanize mathematics the way they are casually written.

2 / 24

Programming : overloaded symbols

1. Overloading in mathematical formulae occurring inside programs
2. Overloading for function names, record fields and data constructors.

Challenging to resolve overloading in the presence of local type inference.

(* Without overloading *)

Array.iteri f (Array.map succ (Array.concat t (Array.of_list [2;3])))

(* With overloading *)

iteri f (map succ (concat t (to_array [2;3])))

type point2D = { x : int; y : int }

type point3D = { x : int; y : int; z : int }

let xvalues2D (ps : point2D list) = List.map (fun r -> r.x) ps

(* Error: The expression [ps] has type point2D list

but an expression was expected of type point3D list *)

3 / 24

Prior work on overloading

▶ Javascript, Python, etc: dynamic resolution

▶ Java: static resolution with dynamic dispatch

▶ Haskell: typeclasses, also with runtime overheads
→ we are interested in static resolution with static dispatch

▶ C++: static resolution, but guided by arguments only
→ never guided by context: no overloading for constants

__instance empty : ’a set

__instance empty : (’a,’b) map

val f : int set -> int

let r = f empty

▶ PVS, ADA: static resolution, guided by arguments and context
→ but no type inference: all variables must be annotated

▶ Mechanized mathematics
▶ Coq’s notation scope → guided by the context only
▶ Typeclasses → indirection: Z.add x y ̸= plus Z plus inst x y
▶ Coq’s canonical structures → complicated, scalability issues

4 / 24

Problem summary

We need a type inference algorithm for resolving overloading,
both for programming language and mathematics

▶ guided by function arguments and by expected type

▶ with support for checking ML type schemes

▶ with local type inference of STLC types.

Desirable features:

1. Predictable

2. Efficient

3. Nice error reporting

5 / 24

Challenge of resolution

Static resolution of overloading is intertwined with typechecking:

▶ overloading resolution depends on types

▶ types of overloaded symbols depend on resolution.

Requires bidirectional propagation of information.

Assume literals can be int or float, and + can be on int or float.

let example_arith =

let x = 0 in

let y = 1 + x in

let z = 2 in

let t = (3 + y) + (4 + z) in

(5 + z) + (6:float)

6 / 24

Challenge of partial applications

Partial applications add ambiguities, thus require more annotations,
hence decrease the benefits of overloading.

__instance sum : int -> int -> int (* [sum x y] *)

__instance sum : int -> int -> int -> int (* [sum x y z] *)

let r = sum 3 4 (* first instance, or partial application of the second? *)

Proposal: a dedicated syntax for partial applications.

#(sum 3 4 _) fun z -> sum 3 4 z

#(sum _ 4 5) fun x -> sum x 4 5

#(sum _ 4 _) fun x z -> sum x 4 z

Thereafter, we consider n-ary functions.

7 / 24

Contents of the talk

1. Complexity of the problem

2. Constraint-based resolution

3. Conjectures

4. Derived instances

8 / 24

Complexity

9 / 24

NP-hardness: encoding to 3-SAT

(𝑥1∨𝑥3∨¬𝑥4) ∧ (𝑥1∨𝑥4∨¬𝑥5) ∧ (𝑥2∨¬𝑥3∨𝑥5) ∧ (¬𝑥2∨𝑥3∨¬𝑥5)

__instance 0 : int (* true and false *)

__instance 0 : float

__instance neg : float -> int (* negation *)

__instance neg : int -> float

__instance f : int -> float -> float -> unit (* at least one true arg *)

__instance f : float -> int -> float -> unit

__instance f : float -> float -> int -> unit

__instance f : int -> int -> float -> unit

__instance f : int -> float -> int -> unit

__instance f : float -> int -> int -> unit

__instance f : int -> int -> int -> unit

let x1 = 0 in (* int or float *)

let x2 = 0 in

let x3 = 0 in

let x4 = 0 in

let x5 = 0 in

f x1 x3 (neg x4); (* at least one argument must be int *)

f x1 x4 (neg x5);

f x2 (neg x3) x5;

f (neg x2) x3 (neg x6);

10 / 24

Constraint-based resolution

11 / 24

Overview

Typechecking algorithm:

1. gather contraints from ML typechecking—standard unifications

2. iteratively try to resolve symbols, in any order.

How to resolve a symbol?
Assume 𝑥 is an overloaded symbol with candidate instances:

(𝑣1 : 𝑇1), ..., (𝑣𝑛 : 𝑇𝑛).

An occurrence of 𝑥 with a type 𝑇 constrained by the context
resolves to 𝑣𝑖 if 𝑇 unifies with 𝑇𝑖 but not with 𝑇𝑗 for 𝑗 ̸= 𝑖.

12 / 24

Representation of terms and types

In this talk, simplified from ML to STLC.

Initialization: annotate each AST node with a fresh, unconstrainted type.

Annotated term 𝑡 ::= 𝑢:𝑇

Contents of a term 𝑢 ::= 𝑥id | 𝑣 | 𝑡1(𝑡2) | let𝑥:𝑇 = 𝑡1 in 𝑡2 | 𝜆𝑥:𝑇 . 𝑡1

Typing environment 𝐸 ::= ∅ | 𝐸, 𝑥 : Regular(𝑇) | 𝐸, 𝑥 : Overloaded(𝐼)

Set of instances 𝐼 ::= ∅ | 𝐼, (𝑣 : 𝑇)

Type representation 𝑇 ::= unique identifiers

Type description 𝐷 ::= Flexible | Unified𝑇 | Constr(𝐶, 𝑇)
Mutable state 𝑠 ::= ∅ | 𝑠[𝑇 := 𝐷] | 𝑠[id := 𝑣] | 𝑠[id := (𝑇, 𝐼)]

The operation unify(𝑇1, 𝑇2) refines the state.

13 / 24

Implementation of unification: standard

type id = unit ref

type typ = desc ref

and desc =

| Flexible

| Unified of typ

| Constr of id * typ list

let rec unify (t1:typ) (t2:typ) : unit =

if !t1 != !t2 then

match !t1, !t2 with

| Unified t1’, _ -> unify t1’ t2

| _, Unified t2’ -> unify t1 t2’

| Flexible, _ -> t1 := Unified t2

| _, Flexible -> t2 := Unified t1

| Constr(c1,ts1), Constr(c2,ts2) ->

if c1 != c2 || List.length ts1 <> List.length ts2 then raise Failure;

List.iter2 unify ts1 ts2

14 / 24

Term constraints: standard except overloaded symbols

Subterm labelled with its type Operations to apply

(let𝑥:𝑇0 = 𝑢1
:𝑇1 in𝑢2

:𝑇2)
:𝑇

unify(𝑇0, 𝑇1) ; unify(𝑇2, 𝑇)

(𝑢0
:𝑇0(𝑢1

:𝑇1))
:𝑇

unify(𝑇0, 𝑇1 → 𝑇)

(𝜆𝑥:𝑇0 . 𝑢1
:𝑇1)

:𝑇
unify(𝑇, 𝑇0 → 𝑇1)

𝑣:𝑇 where 𝑣 is a literal of type 𝑇 ′ unify(𝑇 ′, 𝑇)

𝑥:𝑇id if 𝑥 is bound to Regular(𝑇 ′) unify(𝑇 ′, 𝑇)

𝑥:𝑇id if 𝑥 is bound to Overloaded(𝐼) 𝑠′ := 𝑠[id := (𝑇, 𝐼)]

15 / 24

Symbol resolution

Consider an occurrence 𝑥:𝑇id of a not-yet-resolved overloaded symbol.

𝑠[id] = (𝑇, 𝐼) where 𝐼 = (𝑣1 : 𝑇1), . . . , (𝑣𝑛 : 𝑇𝑛)

If
unify(𝑇𝑖, 𝑇) would succed

∧ ∀𝑗 ̸= 𝑖. unify(𝑇𝑗 , 𝑇) would fail

Then
𝑠′ := 𝑠[id := 𝑣𝑖]

unify(𝑇𝑖, 𝑇)

16 / 24

Implementation

Resolving a overloaded symbol enables the resolution of other symbols.
How to avoid a quadratic processing?

We are currently investigating two possible routes.

1. Use advanced data structures to efficiently find the set of symbols
impacted by the resolution of one symbol.

2. Restrict the set of programs that can be handled by processing the
symbols in a very specific order (top-down, bottom-up, top-down).

17 / 24

Conjectures

18 / 24

Successful typechecking

Typechecking: ML-typechecking followed by iterated symbol resolution.

Extracted program: the program obtained by replacing overloaded
symbols with the values they resolved to.

Theorem (Type soundness)

If a program successfully typechecks, then the extracted program is
well-typed in ML.

Theorem (Non-ambiguity)

If a program successfully typechecks, then no other instantiation of the
overloaded symbols extracts to a well-typed ML program.

19 / 24

Unsuccessful typechecking

If a program does not typecheck, then:

▶ either no instantiation of overloaded symbols makes the extracted
program well-typed in ML,

▶ or several distinct instantiations make the extracted program
well-typed in ML,

▶ or there is exactly one possible instantiation, yet it cannot be
deduced by a sequence of simple deduction (resolution) steps.

20 / 24

Derived instances

21 / 24

Derived instance, example of sum over arrays
Register an instance of sum on ’a array, assuming + and zero on ’a.

let sum (type a) ((+) : a -> a -> a) (zero : a) : a array -> a =

__instance (fun s -> Array.fold (fun acc v -> acc + v) zero s)

let r1 = sum ([| 4; 5; 6 |] : int array) (* infers [r1 : int] *)

let r2 = sum ([| 4; 5; 6 |] : float array) (* infers [r2 : float] *)

Same with packaging of plus and zero.

(* Structure to represent additive monoids *)

type ’a monoid = { op : ’a -> ’a -> ’a ; neutral : ’a }

(* Register an instance of [addmonoid] for types with a [(+)] and [zero]. *)

let addmonoid (type a) ((+) : a -> a -> a) (zero : a) : a monoid =

__instance ({ op = (+); neutral = zero })

(* Register [sum] on [’a array] assuming a monoid on [’a] *)

let sum (type a) (addmonoid as m : a monoid) : a array -> a =

__instance (fun s -> Array.fold (fun acc v -> m.op acc v) m.neutral s)

let r1 = sum ([| 4; 5; 6 |] : int array)

(* --> relies on a resolution of [addmonoid : int monoid] *)

22 / 24

Generalization to sum over containers

(* Example instances of the fold operator *)

__instance fold : (’a -> ’b -> ’a) -> ’a -> ’b array -> ’a

__instance fold : (’a -> ’b -> ’a) -> ’a -> ’b list -> ’a

(* Register an instance of [mapreduce f m s] assuming [fold] *)

let mapreduce (type t) (type a) (type x)

(fold : (a -> x -> a) -> a -> t -> a)

: (x -> a) -> a monoid -> t -> a =

__instance (fun f m s -> fold (fun acc x -> m.op acc (f x)) m.neutral s)

(* Register an instance of [sum s] assuming [mapreduce] and [addmonoid] *)

let sum (type t) (type a)

(mapreduce : (a -> a) -> a monoid -> t -> a)

(addmonoid as m : a monoid)

: t -> a =

__instance (fun s -> mapreduce (fun x -> x) m s)

(* Example usage *)

let r1 = sum ([| 4; 5; 6 |] : int array)

23 / 24

Application to mathematical formulae

∑︁
𝑥∈𝑠

𝑓(𝑥)

let bigsum (type t) (type a) (type x) (* instance for [bigsum s f] *)

(addmonoid as m : a monoid)

(mapreduce : (a -> a) -> a monoid -> t -> a)

: t -> (x -> a) -> a =

__instance (fun s f -> mapreduce f m s)

∑︁
𝑑∈{𝑖,2𝑖}

∑︁
𝑘∈−6..7

3 · 𝑒
𝑑·𝜋
8 ·𝑀2·𝑘2 ·𝑁

let demo (m:complex matrix) (n:complex matrix) =

bigsum [i; 2*i] (fun d ->

bigsum (int_range (-6) 7) (fun k ->

3 * (e ^ (d * pi / 8)) * (m ^ (2*k^2)) * n))

24 / 24

