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Context

I am working with a proof assistant with a trusted kernel in DTT. (E.g. Coq, Lean, Agda, . . .)

• I want to get a concrete value within the proof assistants, e.g. withing Coq/Mathcomp [11]:

-

∣∣∣∣∣1 1 0
1 −1 0
0 0 1

∣∣∣∣∣ = −2, but computation is locked

→ I want to "unlock"
- prime(29986577) = ⊤, but computation takes > 2min

→ I want to run an optimized algorithm

• My goal is about a given type, but my lemma is about an equivalent one.
E.g. I want ∀x : B, x ⊕ x = ⊥

→ but I have ∀x : Z/2Z, x + x = 0
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Context and motivation

Some previous work answering exactly the questions above

• CoqEAL [5] (Cano, me, Dénès, Martin-Dorel, Mörtberg, Rouhling, Roux, Siles), does data transfer.
• Univalent Parametricity [13, 14] (Sozeau, Tabareau, Tanter), changes representation using

univalence.

This work generalizes both. Indeed we may
• change representation without univalence in some cases,
• change representation with partial isos in some cases.

Comparison to other previous work in the paper.
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What is Troc(q)?

Troc subst. masc.
Échange direct de biens sans intervention de monnaie.

∼ “A direct exchange of goods without the use of money” CNRTL

(Proof) Transfer for Rocq

Assia, Cyril, Enzo
It’s a calculus, an Elpi implementation of it and a prototype associated tactic
[Cyril Cohen, Enzo Crance, and Assia Mahboubi. “Artifact Report: Trocq: Proof Transfer for Free, With or Without Univalence”. In: ESOP 2024 - 33rd

European Symposium on Programming. Vol. LNCS-14576. Programming Languages and Systems 33rd European Symposium on Programming, ESOP

2024, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2024, Luxembourg City, Luxembourg, April 6–11,

2024, Proceedings, Part I. Luxembourg, Luxembourg: Springer Nature Switzerland, Apr. 2024, pp. 269–274. doi: 10.1007/978-3-031-57262-3\_11.

url: https://inria.hal.science/hal-04623207]
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1
Old and new examples



The canonical example

We have the standard definition of Peano natural numbers (stdlib)
Inductive N := ON : N | SN (n : N) : N .

For which, we have:
Nind : ∀ P : N → □ , P ON → (∀ n : N , P n → P (S n)) → ∀ n : N , P n

Here is an alternative binary representation (stdlib)
Inductive pos := xI : pos → pos | xO : pos → pos | xH : pos .
Inductive N := ON : N | Npos : pos → N .

Fixpoint Spos (p : pos) : pos := match p with
xH ⇒ xO xH | xO p ⇒ xI p | xI p ⇒ xO (Spos p) end .

Definition SN (n : N) :=
match n with Npos p ⇒ Npos (Spos p) | _ ⇒ Npos xH end .

We want
Nind : ∀ P : N → □ , P ON → (∀ n : N , P n → P (S n)) → ∀ n : N , P n
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Examples of frustration collected during various events A non exhaustive list

1. Computing the degree of a polynomial, e.g. deg((2X + X 5 + 1)X 2) = 7.

2. Reduction modulo, e.g.

- n is a square and a cube =⇒ n = 0 or 1 mod 7,
- 3 ∤ abc =⇒ a3 + b3 ̸= c3 by reduction modulo 9.

⇒ Proof of Concept Demo

3. Problems “created by the use of type theory”, e.g. what is the type of deg(P) for P ∈ R[X ]?

- deg : R[X ] → N
- or deg : R[X ] → N ∪ {−∞}.

Mathlib has both: Polynomial.degree and Polynomial.natDegree

.

Mathcomp has neither, uses size : R[X ] → N

.

In set theory N ⊆ N ∪ {−∞}, but in type theory N ↪→ N ∪ {−∞}.
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Planned integration of Trocqto Coq dreaming...

1. Computing the degree of a polynomial, e.g. deg((2X + X 5 + 1)X 2) = 7.

decide (* := by rewrite computable; vm_compute. *)

(decide is the name of the equivalent lean tactic)
2. Reduction modulo, e.g.

- n is a square and a cube =⇒ n = 0 or 1 mod 7,
- 3 ∤ abc =⇒ a3 + b3 ̸= c3 by reduction modulo 9.

by rewrite (@mod 9); decide. (* where mod : ∀{n}, Z -> Z/nZ *)

3. Problems “created by type theory”, e.g. in set theory N ⊆ N ∪ {−∞}, but in type theory
N ↪→ N ∪ {−∞}.

- either use rewrite -Fin (* where Fin : N ->\bar N *)

- or ... use directly N lemmas on N ∪ {−∞}
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(decide is the name of the equivalent lean tactic)
2. Reduction modulo, e.g.

- n is a square and a cube =⇒ n = 0 or 1 mod 7,
- 3 ∤ abc =⇒ a3 + b3 ̸= c3 by reduction modulo 9.

by rewrite (@mod 9); decide. (* where mod : ∀{n}, Z -> Z/nZ *)

3. Problems “created by type theory”, e.g. in set theory N ⊆ N ∪ {−∞}, but in type theory
N ↪→ N ∪ {−∞}.

- either use rewrite -Fin (* where Fin : N ->\bar N *)
- or ... use directly N lemmas on N ∪ {−∞}
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2
Revisiting parametricity
and univalent parametricity



Parametricity: standard version [2]

• Context translation:

J ⟨⟩ K = ⟨⟩ (1)
J Γ, x : A K = J Γ K, x : A, x ′ : A ′, xR : J A K x x ′ (2)

• Term translation:

J□i K = λA A ′. A → A ′ → □i (3)
J x K = xR (4)

J A B K = J A K B B ′ J B K (5)
J λx : A. t K = λ(x : A)(x ′ : A ′)(xR : J A K x x ′). J t K (6)

J Πx : A. B K = λf f ′. Π(x : A)(x ′ : A ′)(xR : J A K x x ′).

J B K(f x)(f ′ x ′)

(7)

• Abstraction theorem: If Γ ⊢ t : T then J Γ K ⊢ t : T , J Γ K ⊢ t ′ : T ′ and J Γ K ⊢ J t K : J T K t t ′.

Cohen, Crance, Mahboubi – Trocq – October 17nth, 2024 10



Parametricity: standard version [2]

• Context translation:

J ⟨⟩ K = ⟨⟩ (1)
J Γ, x : A K = J Γ K, x : A, x ′ : A ′, xR : J A K x x ′ (2)

• Term translation:

J□i K = λA A ′. A → A ′ → □i (3)
J x K = xR (4)

J A B K = J A K B B ′ J B K (5)
J λx : A. t K = λ(x : A)(x ′ : A ′)(xR : J A K x x ′). J t K (6)

J Πx : A. B K = λf f ′. Π(x : A)(x ′ : A ′)(xR : J A K x x ′).

J B K(f x)(f ′ x ′)

(7)

• Abstraction theorem: If Γ ⊢ t : T then J Γ K ⊢ t : T , J Γ K ⊢ t ′ : T ′ and J Γ K ⊢ J t K : J T K t t ′.

Cohen, Crance, Mahboubi – Trocq – October 17nth, 2024 10



Parametricity: sequent style

Parametricity contexts:
Ξ ::= ε | Ξ, x ∼ x ′ ∵ xR .

Parametricity rules:

Ξ ⊢ □i ∼ □i ∵ λ(A B : □i ). A → B → □i
(ParamSort)

(x, x ′
, xR ) ∈ Ξ Ξ ⊢

Ξ ⊢ x ∼ x ′ ∵ xR
(ParamVar)

Ξ ⊢ M ∼ M ′ ∵ MR Ξ ⊢ N ∼ N ′ ∵ NR

Ξ ⊢ M N ∼ M ′ N ′ ∵ MR N N ′ NR
(ParamApp)

Ξ, x ∼ x ′ ∵ xR ⊢ M ∼ M ′ ∵ MR

Ξ ⊢ λx : A. M ∼ λx ′
: A ′

. M ′ ∵ λx x ′ xR . MR
(ParamLam)

Ξ ⊢ A ∼ A ′ ∵ AR Ξ, x ∼ x ′ ∵ xR ⊢ B ∼ B ′ ∵ BR x, x ′
/∈ Var(Ξ)

Ξ ⊢ Πx : A. B ∼ Πx ′
: A ′

. B ′ ∵ λf g. Πx x ′ xR . BR (f x) (g x ′
)

(ParamPi)
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Parametricity: sequent abstraction theorem

We say Ξ is admissible for Γ if

Γ ▷ Ξ ≜
Ξ ⊢ Γ (x) ∼ A ′ ∵ AR

Γ (x ′) = A ′
∧ Γ (xR) = AR x x ′

We rephrase the abstraction theorem:

Γ ⊢ Γ ⊢ M : A Γ ▷ Ξ Ξ ⊢ M ∼ M ′ ∵ MR Ξ ⊢ A ∼ A ′ ∵ AR

Γ ⊢ M ′ : A ′ and Γ ⊢ MR : AR M M ′

In particular, by applying it to Γ ⊢ A : □i instead, we get:

Γ ▷ Ξ Ξ ⊢ A ∼ A ′ ∵ AR

Γ ⊢ AR : A → A ′ → □i
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Example: motivating raw paramericity

Assume ϕ : N → N and

N ∼ N ∵ λ(m : N)(n : N).ϕ(m) = n
0N ∼ 0N ∵ (0R : ϕ(0N) = 0N)

SN ∼ SN ∵ (SR : ∀m∀n, ϕ(m) = n → ϕ(SNm) = SNn)

Assume we have a derivation

...
fold N 0N (+N)[1N, 2N, 3N] ∼ fold N 0N (+N)[1N, 2N, 3N] ∵ w

Then w has type
ϕ (fold N 0N (+N)[1N, 2N, 3N]) = fold N 0N (+N)[1N, 2N, 3N]
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Example: motivating univalent paramericity

Assume P : □i → □j is a closed term.

PN ∼ PN ∵ w

The witness w has type
J□j K (PN) (PN)

i.e.
(PN) → (PN) → □j

We want
(PN) ↔ (PN)
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Univalent parametricity: standard version
• Term translation:

[□i ] = p□i

λA B. Σ(R : reli A B)(e : A ≃ B).Πab.(R a b) ≃ (a = e−1b)
id□i

univ□i



[ x ] = xR

[ A B ] = [ A ] B B ′
[ B ]

[ λx : A. t ] = Π(x : A)(x ′
: A ′

)(xR : J A K x x ′
). [ t ]

[ Πx : A. B ] = pΠ [ A ] [ B ]

(
λf f ′

. Π(x : A)(x ′
: A ′

)(xR : J A K x x ′
). J B K(f x)(f ′ x ′

)

EquivΠJ A KeqJ B Keq

univΠ

)

• Type translation: J A K = [ A ].1 J A Keq = [ A ].2 J A Kcoh = [ A ].3

• Abstraction theorem: If Γ ⊢ t : T then J Γ K ⊢ [ t ] : J T K t t ′.
• Remark A: If Γ ⊢ A : □i then J Γ K ⊢ [A ] : J□i K A A ′.
• Remark B: ⊢ [□i ] : J□i+1 K □i □i .
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Univalent parametricity: sequent style

Ξ ⊢u □i ∼ □i ∵ p□i

(UParamSort)
(x, x ′

, xR ) ∈ Ξ Ξ ⊢

Ξ ⊢u x ∼ x ′ ∵ xR
(UParamVar)

Ξ ⊢u M ∼ M ′ ∵ MR Ξ ⊢u N ∼ N ′ ∵ NR

Ξ ⊢u M N ∼ M ′ N ′ ∵ MR N N ′ NR
(UParamApp)

Ξ ⊢u A ∼ A ′ ∵ AR Ξ, x ∼ x ′ ∵ xR ⊢u M ∼ M ′ ∵ MR

Ξ ⊢u λx : A. M ∼ λx ′
: A ′

. M ′ ∵ λx x ′ xR . MR
(UParamLam)

Ξ ⊢u A ∼ A ′ ∵ AR Ξ, x ∼ x ′ ∵ xR ⊢u B ∼ B ′ ∵ BR

Ξ ⊢u Πx : A. B ∼ Πx ′
: A ′

. B ′ ∵ pΠ AR BR
(UParamPi)
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Univalent parametricity: sequent abstraction

We rephrase the Univalent parametricity abstraction theorem:

Γ ⊢ Γ ⊢ M : A Γ ▷ Ξ Ξ ⊢u M ∼ M ′ ∵ MR Ξ ⊢u A ∼ A ′ ∵ AR

Γ ⊢ M ′ : A ′ and Ξ ⊢u MR :
(
AR M M ′) .1

Remark A:
Γ ⊢ A : □i Ξ ⊢u A ∼ A ′ ∵ AR Γ ▷ Ξ

Γ ⊢u AR :
(
p□i A A ′) .1

Remark B:
⊢u p□i :

(
p□i+1 □i □i

)
.1
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3
Type equivalence in a kit



Observation

The key datastructure in univalent parametricity is the one of relations which are the graph of
equivalences

�u A B ≜
(
Σ(R : A → B → □)(e : A ≃ B).Πab.(R a b) ≃ (a = e−1b)

)
.

The two following observations
• “inhabiting this structure triggers uses of univalence”,
• “it is not symmetric (one direction is privileged in e)”,

correspond exactly to the two achievements:
• change representation without univalence in some cases,
• change representation with partial isos in some cases.
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Disassembling type equivalence

• We use a variation of (exercise in the HoTT Book):

(A ≃ B) ≃ ΣR : A → B → □. IsFun(R) × IsFun(R−1)

with IsFun(R) ≜ Πa : A. IsContr(Σb : B. R a b)
R−1 ≜ λa b. R b a

• Then we remark IsFun(R) ≃ IsUmap(R), where

IsUmap(R) ≜ Σ(m : A → B).

Σ(g1 : Π(a : A)(b : B). m a = b → R a b).
Σ(g2 : Π(a : A)(b : B). R a b → m a = b).

Π(a : A)(b : B). (g1 a b) ◦ (g2 a b) ≑ id .

• We pose
�⊤ A B ≜ ΣR : A → B → □. IsUmap(R) × IsUmap(R−1)
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Reassembling type equivalence
For α = (n, k) ∈ A ≜ {0, 1, 2a, 2b, 3, 4}2, we pose:

�α ≜ λ(A B : □).Σ(R : A → B → □).Classα R
Classα R ≜ (Mn R) × (Mk R−1)

M0 R ≜ .

M1 R ≜ (A → B)

M2a R ≜ Σm : A → B. G2a m R
G2a m R ≜ Πa b. m a = b → R a b

M2b R ≜ Σm : A → B. G2b m R
G2b m R ≜ Πa b. R a b → m a = b

M3 R ≜ Σm : A → B. (G2a m R) × (G2b m R)

M4 R ≜ Σm : A → B. Σ(g1 : G2a m R). Σ(g2 : G2b m R).

Πa b. (g1 a b) ◦ (g1 a b) ≑ id
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The lattice of annotations A

rel(R) : A → B → □0

1map(R) : A → B

2a 2b

3

4

×

0

1 comap(R) : B → A

2a 2b

3

4univalent parametricity
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Fun facts about �·

• Noting ⊥ = (0, 0), �⊥ is equivalent to the data of a relation.
• Noting ⊤ = (4, 4), the definitions of �⊤ and �(4,4) coincide.
• �(4,0) A B is the same as a function A → B
• �(0,4) A B is the same as a function B → A
• �(4,2a) A B is the same as a split epi A ↠ B
• �(4,2b) A B is the same as a split mono A ↣ B
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The elements pα,β
□ of �β □ □

Let
D□ = {(α, β) ∈ A2

| α = ⊤ ∨ β ∈ {0, 1, 2a}
2
}

For all (α, β) ∈ D□ we can define pα,β
□ such that

⊢u pα,β
□ : �β□ □ and rel(pα,β

□ ) ≡ �α

�β □ □ may have several inhabitants
A translation must explain which one to target.
We need to annotate □ everywhere!
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4
Trocq



Annotating

M, N, A, B ∈ TCC+
ω

::= □α
i | x | M N | λx : A. M | Πx : A. B Γ ⊢+ M : A Γ ⊢+ A ≼ B

Γ ⊢+ M : B
(Conv+

)

(α, β) ∈ D□

Γ ⊢+ □α
i : □β

i+1

(Sort+
)

(x, A) ∈ Γ Γ ⊢+

Γ ⊢+ x : A
(Var+

)
Γ ⊢+ A : □i x /∈ Var(Γ )

Γ, x : A ⊢+
(Context+

)

Γ ⊢+ M : Πx : A. B Γ ⊢+ N : A
Γ ⊢+ M N : B[x := N]

(App+)
Γ, x : A ⊢+ M : B

Γ ⊢+ λx : A. M : Πx : A. B
(Lam+

)

Γ ⊢+ A : □α
i Γ ⊢+ B : □β

i D→(γ) = (α, β)

Γ ⊢+ A → B : □γ
i

(Arrow+
)

Γ ⊢+ A : □α
i Γ, x : A ⊢+ B : □β

i DΠ (γ) = (α, β)

Γ ⊢+ Πx : A. B : □γ
i

(Pi+)

Cohen, Crance, Mahboubi – Trocq – October 17nth, 2024 26



Subtyping

Γ ⊢+ A : K Γ ⊢+ B : K A ≡ B
Γ ⊢+ A ≼ B

(SubConv)
α ≥ β i ≤ j

Γ ⊢+ □α
i ≼ □β

j

(SubSort)

Γ ⊢+ M ′ N : K Γ ⊢+ M ≼ M ′

Γ ⊢+ M N ≼ M ′ N
(SubApp)

Γ, x : A ⊢+ M ≼ M ′

Γ ⊢+ λx : A. M ≼ λx : A. M ′ (SubLam)

Γ ⊢+ Πx : A. B : □i Γ ⊢+ A ′ ≼ A Γ, x : A ′ ⊢+ B ≼ B ′

Γ ⊢+ Πx : A. B ≼ Πx : A ′
. B ′ (SubPi) K ::= □i | Πx : A. K
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Calculus for Trocq

(α, β) ∈ D□

∆ ⊢t □α
i @ □β

i+1 ∼ □α
i ∵ pα,β

□i

(TrocqSort)
(x, A, x ′

, xR ) ∈ ∆ . . .

∆ ⊢t x @ A ∼ x ′ ∵ xR
(TrocqVar)

∆ ⊢t M @ Πx : A. B ∼ M ′ ∵ MR ∆ ⊢t N @ A ∼ N ′ ∵ NR

∆ ⊢t M N @ B[x := N] ∼ M ′ N ′ ∵ MR N N ′ NR
(TrocqApp)

∆ ⊢t A @ □α
i ∼ A ′ ∵ AR ∆, x @ A ∼ x ′ ∵ xR ⊢t M @ B ∼ M ′ ∵ MR

∆ ⊢t λx : A. M @ Πx : A. B ∼ λx ′
: A ′

. M ′ ∵ λx x ′ xR . MR
(TrocqLam)

∆ ⊢t A @ □α
i ∼ A ′ ∵ AR ∆ ⊢t B @ □β

i ∼ B ′ ∵ BR (α, β) = D→(δ)

∆ ⊢t A → B @ □δ
i ∼ A ′ → B ′ ∵ pδ→ AR BR

(TrocqArrow)

∆ ⊢t A @ □α
i ∼ A ′ ∵ AR ∆, x @ A ∼ x ′ ∵ xR ⊢t B @ □β

i ∼ B ′ ∵ BR (α, β) = DΠ (δ)

∆ ⊢t Πx : A. B @ □δ
i ∼ Πx ′

: A ′
. B ′ ∵ pδ

Π AR BR
(TrocqPi)

∆ ⊢t M @ A ∼ M ′ ∵ MR γ(∆) ⊢+ A ≼ B

∆ ⊢t M @ B ∼ M ′ ∵ ⇓A
B MR

(TrocqConv)
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Abstraction Theorem for Trocq

We have:

γ(∆) ⊢+ γ(∆) ⊢+ M : A ∆ ⊢t M @ A ∼ M ′ ∵ MR ∆ ⊢t A @ □α
i ∼ A ′ ∵ AR

γ(∆) ⊢+ M ′ : A ′ and γ(∆) ⊢+ MR : rel(AR) M M ′

Remark A:
γ(∆) ⊢+ A : □α ∆ ⊢t A @ □α

∼ A ′ ∵ AR

γ(∆) ⊢+ AR : �α A A ′ .

Remark B:
⊢+ pα,β

□ : �β □α □α
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5
Extra material



The elements pδ
Π of �δ (ΠA.B) (ΠA ′.B ′)

We need to identify the triples (α, β, δ) ∈ A3 for which it is possible to construct a term pδ
Π such that:

δ ⊢ AR : �α A A ′ δ, x : A, x ′ : A ′, xR : AR x x ′ ⊢ BR : �β B B ′

δ ⊢ pδ
Π AR BR : �δ (Πx : A. B) (Πx ′ : A ′. B ′)

and

rel(pδ
Π AR BR) ≡ λf .λf ′.Π(x : A)(x ′ : A ′)(xR : rel(AR) x x ′).

rel(BR) (f x) (f x ′)

We prove that pδ
Π exists for all (α, β) ∈ Dπ(δ), where . . .
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Definition of DΠ(δ)

For any δ ∈ A:
DΠ(δ) = DΠ(δ1, 0)∨ DΠ(δ2, 0)−1

Where for all α, β ∈ A

(α, β)−1 ≜ (α−1, β−1)

α−1 ≜ (α2, α1)

(α, β)∨ (α ′, β ′) ≜ (α ∨ α ′, β ∨ β ′)

α ∨ β ≜ (α1 ∨ β1, α2 ∨ β2)

Thus, it suffices to define DΠ(m, 0) for all m ∈ {0, 1, 2a, 2b, 3, 4}
The same holds for D→(δ).
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Definition of DΠ(m, 0) and D→(m, 0)

m DΠ(m, 0)1 DΠ(m, 0)2
0 (0, 0) (0, 0)
1 (0, 2a) (1, 0)
2a (0, 4) (2a, 0)
2b (0, 2a) (2b, 0)
3 (0, 4) (3, 0)
4 (0, 4) (4, 0)

m D→(m, 0)1 D→(m, 0)2
0 (0, 0) (0, 0)
1 (0, 1) (1, 0)
2a (0, 2b) (2a, 0)
2b (0, 2a) (2b, 0)
3 (0, 3) (3, 0)
4 (0, 4) (4, 0)
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6
Conclusion



Comparison

Maga
ud

[10
]

Set
oid

rw
. [12

]

Coq
EAL [5]

Tran
sfe

r [6–
9]

ZH
[15

]

TTS [14
]

ACMZ [1]

Trac
kt

[3]

Tro
cq

Heterogeneous relations ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Internal ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

No anticipation ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓

Substitution under ∀ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓

Substitution in dep. types ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✓

No univalence for ? ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓

Preorder relations ✗ ✓ ? ? ? ✗ ? ? ✐

Subrelations ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✐

QERs ✗ ✐ ➡ ➡ ➡ ✗ ✓ ✗ ➡

Subtyping relations ✗ ✗ ➡ ➡ ➡ ✗ ✗ ➡ ➡

System Coq
Coq

Coq
Isabelle/HOL

Coq
Coq/HoTT

(Cubical) Agda

Coq
Coq or Coq/HoTT
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Bring home

• Change representation without univalence in some cases.
• Change representation with partial isos in some cases.

In our current version,
• univalence is required if and only if there is some □α such that α ≥ (2b, 0) or α ≥ (0, 2b) occurs in

the derivation.
• reducing a goal G to an hypothesis H corresponds to finding an element �(0,1) G H (i.e. an arrow

H → G). If the body of G and H have the right variance, we might keep the invariant that nothing
more than the partial isos □(4,2a), □(4,2b),□(2a,4) or □(2b,4) are required on given types.

In the future (with a bit more work), we may unify
• CoqEAL
• Univalent paramericity
• Generalized (Setoid) rewriting
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