
Trocq: Proof Transfer for Free,
With or Without Univalence

Cyril Cohen1, Enzo Crance2,3, Assia Mahboubi3
1Université Côte d’Azur, Inria, France
2Mitsubishi Electric R&D Centre Europe, France
3Nantes Université, École Centrale Nantes, CNRS, INRIA, LS2N, UMR 6004, France

Liber Abaci October 17nth, 2024

Cohen, Crance, Mahboubi – Trocq – October 17nth, 2024 1

Context

I am working with a proof assistant with a trusted kernel in DTT. (E.g. Coq, Lean, Agda, . . .)

• I want to get a concrete value within the proof assistants, e.g. withing Coq/Mathcomp [11]:

-

∣∣∣∣∣1 1 0
1 −1 0
0 0 1

∣∣∣∣∣ = −2, but computation is locked

→ I want to "unlock"
- prime(29986577) = ⊤, but computation takes > 2min

→ I want to run an optimized algorithm

• My goal is about a given type, but my lemma is about an equivalent one.
E.g. I want ∀x : B, x ⊕ x = ⊥

→ but I have ∀x : Z/2Z, x + x = 0

Cohen, Crance, Mahboubi – Trocq – October 17nth, 2024 2

Context

I am working with a proof assistant with a trusted kernel in DTT. (E.g. Coq, Lean, Agda, . . .)

• I want to get a concrete value within the proof assistants, e.g. withing Coq/Mathcomp [11]:

-

∣∣∣∣∣1 1 0
1 −1 0
0 0 1

∣∣∣∣∣ = −2, but computation is locked

→ I want to "unlock"

- prime(29986577) = ⊤, but computation takes > 2min

→ I want to run an optimized algorithm

• My goal is about a given type, but my lemma is about an equivalent one.
E.g. I want ∀x : B, x ⊕ x = ⊥

→ but I have ∀x : Z/2Z, x + x = 0

Cohen, Crance, Mahboubi – Trocq – October 17nth, 2024 2

Context

I am working with a proof assistant with a trusted kernel in DTT. (E.g. Coq, Lean, Agda, . . .)

• I want to get a concrete value within the proof assistants, e.g. withing Coq/Mathcomp [11]:

-

∣∣∣∣∣1 1 0
1 −1 0
0 0 1

∣∣∣∣∣ = −2, but computation is locked

→ I want to "unlock"
- prime(29986577) = ⊤, but computation takes > 2min

→ I want to run an optimized algorithm
• My goal is about a given type, but my lemma is about an equivalent one.

E.g. I want ∀x : B, x ⊕ x = ⊥

→ but I have ∀x : Z/2Z, x + x = 0

Cohen, Crance, Mahboubi – Trocq – October 17nth, 2024 2

Context

I am working with a proof assistant with a trusted kernel in DTT. (E.g. Coq, Lean, Agda, . . .)

• I want to get a concrete value within the proof assistants, e.g. withing Coq/Mathcomp [11]:

-

∣∣∣∣∣1 1 0
1 −1 0
0 0 1

∣∣∣∣∣ = −2, but computation is locked

→ I want to "unlock"
- prime(29986577) = ⊤, but computation takes > 2min→ I want to run an optimized algorithm

• My goal is about a given type, but my lemma is about an equivalent one.
E.g. I want ∀x : B, x ⊕ x = ⊥

→ but I have ∀x : Z/2Z, x + x = 0

Cohen, Crance, Mahboubi – Trocq – October 17nth, 2024 2

Context

I am working with a proof assistant with a trusted kernel in DTT. (E.g. Coq, Lean, Agda, . . .)

• I want to get a concrete value within the proof assistants, e.g. withing Coq/Mathcomp [11]:

-

∣∣∣∣∣1 1 0
1 −1 0
0 0 1

∣∣∣∣∣ = −2, but computation is locked

→ I want to "unlock"
- prime(29986577) = ⊤, but computation takes > 2min→ I want to run an optimized algorithm

• My goal is about a given type, but my lemma is about an equivalent one.
E.g. I want ∀x : B, x ⊕ x = ⊥

→ but I have ∀x : Z/2Z, x + x = 0

Cohen, Crance, Mahboubi – Trocq – October 17nth, 2024 2

Context

I am working with a proof assistant with a trusted kernel in DTT. (E.g. Coq, Lean, Agda, . . .)

• I want to get a concrete value within the proof assistants, e.g. withing Coq/Mathcomp [11]:

-

∣∣∣∣∣1 1 0
1 −1 0
0 0 1

∣∣∣∣∣ = −2, but computation is locked

→ I want to "unlock"
- prime(29986577) = ⊤, but computation takes > 2min→ I want to run an optimized algorithm

• My goal is about a given type, but my lemma is about an equivalent one.
E.g. I want ∀x : B, x ⊕ x = ⊥→ but I have ∀x : Z/2Z, x + x = 0

Cohen, Crance, Mahboubi – Trocq – October 17nth, 2024 2

Context

I am working with a proof assistant with a trusted kernel in DTT. (E.g. Coq, Lean, Agda, . . .)

• I want to get a concrete value within the proof assistants, e.g. withing Coq/Mathcomp [11]:

-

∣∣∣∣∣1 1 0
1 −1 0
0 0 1

∣∣∣∣∣ = −2, but computation is locked

→ I want to "unlock"
- prime(29986577) = ⊤, but computation takes > 2min→ I want to run an optimized algorithm

• My goal is about a given type, but my lemma is about an equivalent one.
E.g. I want ∀x : B, x ⊕ x = ⊥→ but I have ∀x : Z/2Z, x + x = 0

Cohen, Crance, Mahboubi – Trocq – October 17nth, 2024 2

Context and motivation

Some previous work answering exactly the questions above

• CoqEAL [5] (Cano, me, Dénès, Martin-Dorel, Mörtberg, Rouhling, Roux, Siles), does data transfer.
• Univalent Parametricity [13, 14] (Sozeau, Tabareau, Tanter), changes representation using

univalence.

This work generalizes both. Indeed we may
• change representation without univalence in some cases,
• change representation with partial isos in some cases.

Comparison to other previous work in the paper.

Cohen, Crance, Mahboubi – Trocq – October 17nth, 2024 3

Context and motivation

Some previous work answering exactly the questions above

• CoqEAL [5] (Cano, me, Dénès, Martin-Dorel, Mörtberg, Rouhling, Roux, Siles), does data transfer.
• Univalent Parametricity [13, 14] (Sozeau, Tabareau, Tanter), changes representation using

univalence.

This work generalizes both. Indeed we may
• change representation without univalence in some cases,
• change representation with partial isos in some cases.

Comparison to other previous work in the paper.

Cohen, Crance, Mahboubi – Trocq – October 17nth, 2024 3

What is Troc(q)?

Troc subst. masc.
Échange direct de biens sans intervention de monnaie.

∼ “A direct exchange of goods without the use of money” CNRTL

(Proof) Transfer for Rocq

Assia, Cyril, Enzo
It’s a calculus, an Elpi implementation of it and a prototype associated tactic
[Cyril Cohen, Enzo Crance, and Assia Mahboubi. “Artifact Report: Trocq: Proof Transfer for Free, With or Without Univalence”. In: ESOP 2024 - 33rd

European Symposium on Programming. Vol. LNCS-14576. Programming Languages and Systems 33rd European Symposium on Programming, ESOP

2024, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2024, Luxembourg City, Luxembourg, April 6–11,

2024, Proceedings, Part I. Luxembourg, Luxembourg: Springer Nature Switzerland, Apr. 2024, pp. 269–274. doi: 10.1007/978-3-031-57262-3_11.

url: https://inria.hal.science/hal-04623207]

Cohen, Crance, Mahboubi – Trocq – October 17nth, 2024 4

https://doi.org/10.1007/978-3-031-57262-3_11
https://inria.hal.science/hal-04623207

What is Troc(q)?

Troc subst. masc.
Échange direct de biens sans intervention de monnaie.

∼ “A direct exchange of goods without the use of money” CNRTL

(Proof) Transfer for Rocq

Assia, Cyril, Enzo

It’s a calculus, an Elpi implementation of it and a prototype associated tactic
[Cyril Cohen, Enzo Crance, and Assia Mahboubi. “Artifact Report: Trocq: Proof Transfer for Free, With or Without Univalence”. In: ESOP 2024 - 33rd

European Symposium on Programming. Vol. LNCS-14576. Programming Languages and Systems 33rd European Symposium on Programming, ESOP

2024, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2024, Luxembourg City, Luxembourg, April 6–11,

2024, Proceedings, Part I. Luxembourg, Luxembourg: Springer Nature Switzerland, Apr. 2024, pp. 269–274. doi: 10.1007/978-3-031-57262-3_11.

url: https://inria.hal.science/hal-04623207]

Cohen, Crance, Mahboubi – Trocq – October 17nth, 2024 4

https://doi.org/10.1007/978-3-031-57262-3_11
https://inria.hal.science/hal-04623207

What is Troc(q)?

Troc subst. masc.
Échange direct de biens sans intervention de monnaie.

∼ “A direct exchange of goods without the use of money” CNRTL

(Proof) Transfer for Rocq

Assia, Cyril, Enzo
It’s a calculus, an Elpi implementation of it and a prototype associated tactic

[Cyril Cohen, Enzo Crance, and Assia Mahboubi. “Artifact Report: Trocq: Proof Transfer for Free, With or Without Univalence”. In: ESOP 2024 - 33rd

European Symposium on Programming. Vol. LNCS-14576. Programming Languages and Systems 33rd European Symposium on Programming, ESOP

2024, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2024, Luxembourg City, Luxembourg, April 6–11,

2024, Proceedings, Part I. Luxembourg, Luxembourg: Springer Nature Switzerland, Apr. 2024, pp. 269–274. doi: 10.1007/978-3-031-57262-3_11.

url: https://inria.hal.science/hal-04623207]

Cohen, Crance, Mahboubi – Trocq – October 17nth, 2024 4

https://doi.org/10.1007/978-3-031-57262-3_11
https://inria.hal.science/hal-04623207

What is Troc(q)?

Troc subst. masc.
Échange direct de biens sans intervention de monnaie.

∼ “A direct exchange of goods without the use of money” CNRTL

(Proof) Transfer for Rocq

Assia, Cyril, Enzo
It’s a calculus, an Elpi implementation of it and a prototype associated tactic
[Cyril Cohen, Enzo Crance, and Assia Mahboubi. “Artifact Report: Trocq: Proof Transfer for Free, With or Without Univalence”. In: ESOP 2024 - 33rd

European Symposium on Programming. Vol. LNCS-14576. Programming Languages and Systems 33rd European Symposium on Programming, ESOP

2024, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2024, Luxembourg City, Luxembourg, April 6–11,

2024, Proceedings, Part I. Luxembourg, Luxembourg: Springer Nature Switzerland, Apr. 2024, pp. 269–274. doi: 10.1007/978-3-031-57262-3_11.

url: https://inria.hal.science/hal-04623207]

Cohen, Crance, Mahboubi – Trocq – October 17nth, 2024 4

https://doi.org/10.1007/978-3-031-57262-3_11
https://inria.hal.science/hal-04623207

Cohen, Crance, Mahboubi – Trocq – October 17nth, 2024 5

1
Old and new examples

The canonical example

We have the standard definition of Peano natural numbers (stdlib)
Inductive N := ON : N | SN (n : N) : N .

For which, we have:
Nind : ∀ P : N → □ , P ON → (∀ n : N , P n → P (S n)) → ∀ n : N , P n

Here is an alternative binary representation (stdlib)
Inductive pos := xI : pos → pos | xO : pos → pos | xH : pos .
Inductive N := ON : N | Npos : pos → N .

Fixpoint Spos (p : pos) : pos := match p with
xH ⇒ xO xH | xO p ⇒ xI p | xI p ⇒ xO (Spos p) end .

Definition SN (n : N) :=
match n with Npos p ⇒ Npos (Spos p) | _ ⇒ Npos xH end .

We want
Nind : ∀ P : N → □ , P ON → (∀ n : N , P n → P (S n)) → ∀ n : N , P n

Cohen, Crance, Mahboubi – Trocq – October 17nth, 2024 6

The canonical example

We have the standard definition of Peano natural numbers (stdlib)
Inductive N := ON : N | SN (n : N) : N .

For which, we have:
Nind : ∀ P : N → □ , P ON → (∀ n : N , P n → P (S n)) → ∀ n : N , P n

Here is an alternative binary representation (stdlib)
Inductive pos := xI : pos → pos | xO : pos → pos | xH : pos .
Inductive N := ON : N | Npos : pos → N .

Fixpoint Spos (p : pos) : pos := match p with
xH ⇒ xO xH | xO p ⇒ xI p | xI p ⇒ xO (Spos p) end .

Definition SN (n : N) :=
match n with Npos p ⇒ Npos (Spos p) | _ ⇒ Npos xH end .

We want
Nind : ∀ P : N → □ , P ON → (∀ n : N , P n → P (S n)) → ∀ n : N , P n

Cohen, Crance, Mahboubi – Trocq – October 17nth, 2024 6

The canonical example

We have the standard definition of Peano natural numbers (stdlib)
Inductive N := ON : N | SN (n : N) : N .

For which, we have:
Nind : ∀ P : N → □ , P ON → (∀ n : N , P n → P (S n)) → ∀ n : N , P n

Here is an alternative binary representation (stdlib)
Inductive pos := xI : pos → pos | xO : pos → pos | xH : pos .
Inductive N := ON : N | Npos : pos → N .

Fixpoint Spos (p : pos) : pos := match p with
xH ⇒ xO xH | xO p ⇒ xI p | xI p ⇒ xO (Spos p) end .

Definition SN (n : N) :=
match n with Npos p ⇒ Npos (Spos p) | _ ⇒ Npos xH end .

We want
Nind : ∀ P : N → □ , P ON → (∀ n : N , P n → P (S n)) → ∀ n : N , P n

Cohen, Crance, Mahboubi – Trocq – October 17nth, 2024 6

Examples of frustration collected during various events A non exhaustive list

1. Computing the degree of a polynomial, e.g. deg((2X + X 5 + 1)X 2) = 7.

2. Reduction modulo, e.g.

- n is a square and a cube =⇒ n = 0 or 1 mod 7,
- 3 ∤ abc =⇒ a3 + b3 ̸= c3 by reduction modulo 9.

⇒ Proof of Concept Demo

3. Problems “created by the use of type theory”, e.g. what is the type of deg(P) for P ∈ R[X]?

- deg : R[X] → N
- or deg : R[X] → N ∪ {−∞}.

Mathlib has both: Polynomial.degree and Polynomial.natDegree

.

Mathcomp has neither, uses size : R[X] → N

.

In set theory N ⊆ N ∪ {−∞}, but in type theory N ↪→ N ∪ {−∞}.

Cohen, Crance, Mahboubi – Trocq – October 17nth, 2024 7

Examples of frustration collected during various events A non exhaustive list

1. Computing the degree of a polynomial, e.g. deg((2X + X 5 + 1)X 2) = 7.

2. Reduction modulo, e.g.
- n is a square and a cube =⇒ n = 0 or 1 mod 7,

- 3 ∤ abc =⇒ a3 + b3 ̸= c3 by reduction modulo 9.

⇒ Proof of Concept Demo

3. Problems “created by the use of type theory”, e.g. what is the type of deg(P) for P ∈ R[X]?

- deg : R[X] → N
- or deg : R[X] → N ∪ {−∞}.

Mathlib has both: Polynomial.degree and Polynomial.natDegree

.

Mathcomp has neither, uses size : R[X] → N

.

In set theory N ⊆ N ∪ {−∞}, but in type theory N ↪→ N ∪ {−∞}.

Cohen, Crance, Mahboubi – Trocq – October 17nth, 2024 7

Examples of frustration collected during various events A non exhaustive list

1. Computing the degree of a polynomial, e.g. deg((2X + X 5 + 1)X 2) = 7.

2. Reduction modulo, e.g.
- n is a square and a cube =⇒ n = 0 or 1 mod 7,
- 3 ∤ abc =⇒ a3 + b3 ̸= c3 by reduction modulo 9.

⇒ Proof of Concept Demo

3. Problems “created by the use of type theory”, e.g. what is the type of deg(P) for P ∈ R[X]?

- deg : R[X] → N
- or deg : R[X] → N ∪ {−∞}.

Mathlib has both: Polynomial.degree and Polynomial.natDegree

.

Mathcomp has neither, uses size : R[X] → N

.

In set theory N ⊆ N ∪ {−∞}, but in type theory N ↪→ N ∪ {−∞}.

Cohen, Crance, Mahboubi – Trocq – October 17nth, 2024 7

Examples of frustration collected during various events A non exhaustive list

1. Computing the degree of a polynomial, e.g. deg((2X + X 5 + 1)X 2) = 7.

2. Reduction modulo, e.g.
- n is a square and a cube =⇒ n = 0 or 1 mod 7,
- 3 ∤ abc =⇒ a3 + b3 ̸= c3 by reduction modulo 9.

⇒ Proof of Concept Demo

3. Problems “created by the use of type theory”, e.g. what is the type of deg(P) for P ∈ R[X]?

- deg : R[X] → N
- or deg : R[X] → N ∪ {−∞}.

Mathlib has both: Polynomial.degree and Polynomial.natDegree

.

Mathcomp has neither, uses size : R[X] → N

.

In set theory N ⊆ N ∪ {−∞}, but in type theory N ↪→ N ∪ {−∞}.

Cohen, Crance, Mahboubi – Trocq – October 17nth, 2024 7

Examples of frustration collected during various events A non exhaustive list

1. Computing the degree of a polynomial, e.g. deg((2X + X 5 + 1)X 2) = 7.

2. Reduction modulo, e.g.
- n is a square and a cube =⇒ n = 0 or 1 mod 7,
- 3 ∤ abc =⇒ a3 + b3 ̸= c3 by reduction modulo 9.

⇒ Proof of Concept Demo

3. Problems “created by the use of type theory”, e.g. what is the type of deg(P) for P ∈ R[X]?
- deg : R[X] → N

- or deg : R[X] → N ∪ {−∞}.
Mathlib has both: Polynomial.degree and Polynomial.natDegree

.

Mathcomp has neither, uses size : R[X] → N

.

In set theory N ⊆ N ∪ {−∞}, but in type theory N ↪→ N ∪ {−∞}.

Cohen, Crance, Mahboubi – Trocq – October 17nth, 2024 7

Examples of frustration collected during various events A non exhaustive list

1. Computing the degree of a polynomial, e.g. deg((2X + X 5 + 1)X 2) = 7.

2. Reduction modulo, e.g.
- n is a square and a cube =⇒ n = 0 or 1 mod 7,
- 3 ∤ abc =⇒ a3 + b3 ̸= c3 by reduction modulo 9.

⇒ Proof of Concept Demo

3. Problems “created by the use of type theory”, e.g. what is the type of deg(P) for P ∈ R[X]?
- deg : R[X] → N
- or deg : R[X] → N ∪ {−∞}.

Mathlib has both: Polynomial.degree and Polynomial.natDegree

.

Mathcomp has neither, uses size : R[X] → N

.

In set theory N ⊆ N ∪ {−∞}, but in type theory N ↪→ N ∪ {−∞}.

Cohen, Crance, Mahboubi – Trocq – October 17nth, 2024 7

Examples of frustration collected during various events A non exhaustive list

1. Computing the degree of a polynomial, e.g. deg((2X + X 5 + 1)X 2) = 7.

2. Reduction modulo, e.g.
- n is a square and a cube =⇒ n = 0 or 1 mod 7,
- 3 ∤ abc =⇒ a3 + b3 ̸= c3 by reduction modulo 9.

⇒ Proof of Concept Demo

3. Problems “created by the use of type theory”, e.g. what is the type of deg(P) for P ∈ R[X]?
- deg : R[X] → N
- or deg : R[X] → N ∪ {−∞}.

Mathlib has

both: Polynomial.degree and Polynomial.natDegree

.

Mathcomp has neither, uses size : R[X] → N

.

In set theory N ⊆ N ∪ {−∞}, but in type theory N ↪→ N ∪ {−∞}.

Cohen, Crance, Mahboubi – Trocq – October 17nth, 2024 7

Examples of frustration collected during various events A non exhaustive list

1. Computing the degree of a polynomial, e.g. deg((2X + X 5 + 1)X 2) = 7.

2. Reduction modulo, e.g.
- n is a square and a cube =⇒ n = 0 or 1 mod 7,
- 3 ∤ abc =⇒ a3 + b3 ̸= c3 by reduction modulo 9.

⇒ Proof of Concept Demo

3. Problems “created by the use of type theory”, e.g. what is the type of deg(P) for P ∈ R[X]?
- deg : R[X] → N
- or deg : R[X] → N ∪ {−∞}.

Mathlib has both: Polynomial.degree and Polynomial.natDegree.

Mathcomp has neither, uses size : R[X] → N

.

In set theory N ⊆ N ∪ {−∞}, but in type theory N ↪→ N ∪ {−∞}.

Cohen, Crance, Mahboubi – Trocq – October 17nth, 2024 7

Examples of frustration collected during various events A non exhaustive list

1. Computing the degree of a polynomial, e.g. deg((2X + X 5 + 1)X 2) = 7.

2. Reduction modulo, e.g.
- n is a square and a cube =⇒ n = 0 or 1 mod 7,
- 3 ∤ abc =⇒ a3 + b3 ̸= c3 by reduction modulo 9.

⇒ Proof of Concept Demo

3. Problems “created by the use of type theory”, e.g. what is the type of deg(P) for P ∈ R[X]?
- deg : R[X] → N
- or deg : R[X] → N ∪ {−∞}.

Mathlib has both: Polynomial.degree and Polynomial.natDegree.
Mathcomp has

neither, uses size : R[X] → N

.

In set theory N ⊆ N ∪ {−∞}, but in type theory N ↪→ N ∪ {−∞}.

Cohen, Crance, Mahboubi – Trocq – October 17nth, 2024 7

Examples of frustration collected during various events A non exhaustive list

1. Computing the degree of a polynomial, e.g. deg((2X + X 5 + 1)X 2) = 7.

2. Reduction modulo, e.g.
- n is a square and a cube =⇒ n = 0 or 1 mod 7,
- 3 ∤ abc =⇒ a3 + b3 ̸= c3 by reduction modulo 9.

⇒ Proof of Concept Demo

3. Problems “created by the use of type theory”, e.g. what is the type of deg(P) for P ∈ R[X]?
- deg : R[X] → N
- or deg : R[X] → N ∪ {−∞}.

Mathlib has both: Polynomial.degree and Polynomial.natDegree.
Mathcomp has neither, uses size : R[X] → N.

In set theory N ⊆ N ∪ {−∞}, but in type theory N ↪→ N ∪ {−∞}.

Cohen, Crance, Mahboubi – Trocq – October 17nth, 2024 7

Examples of frustration collected during various events A non exhaustive list

1. Computing the degree of a polynomial, e.g. deg((2X + X 5 + 1)X 2) = 7.

2. Reduction modulo, e.g.
- n is a square and a cube =⇒ n = 0 or 1 mod 7,
- 3 ∤ abc =⇒ a3 + b3 ̸= c3 by reduction modulo 9.

⇒ Proof of Concept Demo

3. Problems “created by the use of type theory”, e.g. what is the type of deg(P) for P ∈ R[X]?
- deg : R[X] → N
- or deg : R[X] → N ∪ {−∞}.

Mathlib has both: Polynomial.degree and Polynomial.natDegree.
Mathcomp has neither, uses size : R[X] → N.
In set theory N ⊆ N ∪ {−∞}, but in type theory N ↪→ N ∪ {−∞}.

Cohen, Crance, Mahboubi – Trocq – October 17nth, 2024 7

Examples of frustration collected during various events A non exhaustive list

1. Computing the degree of a polynomial, e.g. deg((2X + X 5 + 1)X 2) = 7.

2. Reduction modulo, e.g.
- n is a square and a cube =⇒ n = 0 or 1 mod 7,
- 3 ∤ abc =⇒ a3 + b3 ̸= c3 by reduction modulo 9. ⇒ Proof of Concept Demo

3. Problems “created by the use of type theory”, e.g. what is the type of deg(P) for P ∈ R[X]?
- deg : R[X] → N
- or deg : R[X] → N ∪ {−∞}.

Mathlib has both: Polynomial.degree and Polynomial.natDegree.
Mathcomp has neither, uses size : R[X] → N.
In set theory N ⊆ N ∪ {−∞}, but in type theory N ↪→ N ∪ {−∞}.

Cohen, Crance, Mahboubi – Trocq – October 17nth, 2024 7

Planned integration of Trocqto Coq dreaming...

1. Computing the degree of a polynomial, e.g. deg((2X + X 5 + 1)X 2) = 7.

decide (* := by rewrite computable; vm_compute. *)

(decide is the name of the equivalent lean tactic)
2. Reduction modulo, e.g.

- n is a square and a cube =⇒ n = 0 or 1 mod 7,
- 3 ∤ abc =⇒ a3 + b3 ̸= c3 by reduction modulo 9.

by rewrite (@mod 9); decide. (* where mod : ∀{n}, Z -> Z/nZ *)

3. Problems “created by type theory”, e.g. in set theory N ⊆ N ∪ {−∞}, but in type theory
N ↪→ N ∪ {−∞}.

- either use rewrite -Fin (* where Fin : N ->\bar N *)

- or ... use directly N lemmas on N ∪ {−∞}

Cohen, Crance, Mahboubi – Trocq – October 17nth, 2024 8

Planned integration of Trocqto Coq dreaming...

1. Computing the degree of a polynomial, e.g. deg((2X + X 5 + 1)X 2) = 7.

decide (* := by rewrite computable; vm_compute. *)

(decide is the name of the equivalent lean tactic)
2. Reduction modulo, e.g.

- n is a square and a cube =⇒ n = 0 or 1 mod 7,
- 3 ∤ abc =⇒ a3 + b3 ̸= c3 by reduction modulo 9.

by rewrite (@mod 9); decide. (* where mod : ∀{n}, Z -> Z/nZ *)

3. Problems “created by type theory”, e.g. in set theory N ⊆ N ∪ {−∞}, but in type theory
N ↪→ N ∪ {−∞}.

- either use rewrite -Fin (* where Fin : N ->\bar N *)
- or ... use directly N lemmas on N ∪ {−∞}

Cohen, Crance, Mahboubi – Trocq – October 17nth, 2024 8

Cohen, Crance, Mahboubi – Trocq – October 17nth, 2024 9

2
Revisiting parametricity
and univalent parametricity

Parametricity: standard version [2]

• Context translation:

J ⟨⟩ K = ⟨⟩ (1)
J Γ, x : A K = J Γ K, x : A, x ′ : A ′, xR : J A K x x ′ (2)

• Term translation:

J□i K = λA A ′. A → A ′ → □i (3)
J x K = xR (4)

J A B K = J A K B B ′ J B K (5)
J λx : A. t K = λ(x : A)(x ′ : A ′)(xR : J A K x x ′). J t K (6)

J Πx : A. B K = λf f ′. Π(x : A)(x ′ : A ′)(xR : J A K x x ′).

J B K(f x)(f ′ x ′)

(7)

• Abstraction theorem: If Γ ⊢ t : T then J Γ K ⊢ t : T , J Γ K ⊢ t ′ : T ′ and J Γ K ⊢ J t K : J T K t t ′.

Cohen, Crance, Mahboubi – Trocq – October 17nth, 2024 10

Parametricity: standard version [2]

• Context translation:

J ⟨⟩ K = ⟨⟩ (1)
J Γ, x : A K = J Γ K, x : A, x ′ : A ′, xR : J A K x x ′ (2)

• Term translation:

J□i K = λA A ′. A → A ′ → □i (3)
J x K = xR (4)

J A B K = J A K B B ′ J B K (5)
J λx : A. t K = λ(x : A)(x ′ : A ′)(xR : J A K x x ′). J t K (6)

J Πx : A. B K = λf f ′. Π(x : A)(x ′ : A ′)(xR : J A K x x ′).

J B K(f x)(f ′ x ′)

(7)

• Abstraction theorem: If Γ ⊢ t : T then J Γ K ⊢ t : T , J Γ K ⊢ t ′ : T ′ and J Γ K ⊢ J t K : J T K t t ′.

Cohen, Crance, Mahboubi – Trocq – October 17nth, 2024 10

Parametricity: sequent style

Parametricity contexts:
Ξ ::= ε | Ξ, x ∼ x ′ ∵ xR .

Parametricity rules:

Ξ ⊢ □i ∼ □i ∵ λ(A B : □i). A → B → □i
(ParamSort)

(x, x ′
, xR) ∈ Ξ Ξ ⊢

Ξ ⊢ x ∼ x ′ ∵ xR
(ParamVar)

Ξ ⊢ M ∼ M ′ ∵ MR Ξ ⊢ N ∼ N ′ ∵ NR

Ξ ⊢ M N ∼ M ′ N ′ ∵ MR N N ′ NR
(ParamApp)

Ξ, x ∼ x ′ ∵ xR ⊢ M ∼ M ′ ∵ MR

Ξ ⊢ λx : A. M ∼ λx ′
: A ′

. M ′ ∵ λx x ′ xR . MR
(ParamLam)

Ξ ⊢ A ∼ A ′ ∵ AR Ξ, x ∼ x ′ ∵ xR ⊢ B ∼ B ′ ∵ BR x, x ′
/∈ Var(Ξ)

Ξ ⊢ Πx : A. B ∼ Πx ′
: A ′

. B ′ ∵ λf g. Πx x ′ xR . BR (f x) (g x ′
)

(ParamPi)

Cohen, Crance, Mahboubi – Trocq – October 17nth, 2024 11

Parametricity: sequent abstraction theorem

We say Ξ is admissible for Γ if

Γ ▷ Ξ ≜
Ξ ⊢ Γ (x) ∼ A ′ ∵ AR

Γ (x ′) = A ′
∧ Γ (xR) = AR x x ′

We rephrase the abstraction theorem:

Γ ⊢ Γ ⊢ M : A Γ ▷ Ξ Ξ ⊢ M ∼ M ′ ∵ MR Ξ ⊢ A ∼ A ′ ∵ AR

Γ ⊢ M ′ : A ′ and Γ ⊢ MR : AR M M ′

In particular, by applying it to Γ ⊢ A : □i instead, we get:

Γ ▷ Ξ Ξ ⊢ A ∼ A ′ ∵ AR

Γ ⊢ AR : A → A ′ → □i

Cohen, Crance, Mahboubi – Trocq – October 17nth, 2024 12

Example: motivating raw paramericity

Assume ϕ : N → N and

N ∼ N ∵ λ(m : N)(n : N).ϕ(m) = n
0N ∼ 0N ∵ (0R : ϕ(0N) = 0N)

SN ∼ SN ∵ (SR : ∀m∀n, ϕ(m) = n → ϕ(SNm) = SNn)

Assume we have a derivation

...
fold N 0N (+N)[1N, 2N, 3N] ∼ fold N 0N (+N)[1N, 2N, 3N] ∵ w

Then w has type
ϕ (fold N 0N (+N)[1N, 2N, 3N]) = fold N 0N (+N)[1N, 2N, 3N]

Cohen, Crance, Mahboubi – Trocq – October 17nth, 2024 13

Example: motivating raw paramericity

Assume ϕ : N → N and

N ∼ N ∵ λ(m : N)(n : N).ϕ(m) = n
0N ∼ 0N ∵ (0R : ϕ(0N) = 0N)

SN ∼ SN ∵ (SR : ∀m∀n, ϕ(m) = n → ϕ(SNm) = SNn)

Assume we have a derivation

...
fold N 0N (+N)[1N, 2N, 3N] ∼ fold N 0N (+N)[1N, 2N, 3N] ∵ w

Then w has type
ϕ (fold N 0N (+N)[1N, 2N, 3N]) = fold N 0N (+N)[1N, 2N, 3N]

Cohen, Crance, Mahboubi – Trocq – October 17nth, 2024 13

Example: motivating raw paramericity

Assume ϕ : N → N and

N ∼ N ∵ λ(m : N)(n : N).ϕ(m) = n
0N ∼ 0N ∵ (0R : ϕ(0N) = 0N)

SN ∼ SN ∵ (SR : ∀m∀n, ϕ(m) = n → ϕ(SNm) = SNn)

Assume we have a derivation

...
fold N 0N (+N)[1N, 2N, 3N] ∼ fold N 0N (+N)[1N, 2N, 3N] ∵ w

Then w has type
ϕ (fold N 0N (+N)[1N, 2N, 3N]) = fold N 0N (+N)[1N, 2N, 3N]

Cohen, Crance, Mahboubi – Trocq – October 17nth, 2024 13

Example: motivating univalent paramericity

Assume P : □i → □j is a closed term.

PN ∼ PN ∵ w

The witness w has type
J□j K (PN) (PN)

i.e.
(PN) → (PN) → □j

We want
(PN) ↔ (PN)

Cohen, Crance, Mahboubi – Trocq – October 17nth, 2024 14

Example: motivating univalent paramericity

Assume P : □i → □j is a closed term.

PN ∼ PN ∵ w

The witness w has type
J□j K (PN) (PN)

i.e.
(PN) → (PN) → □j

We want
(PN) ↔ (PN)

Cohen, Crance, Mahboubi – Trocq – October 17nth, 2024 14

Univalent parametricity: standard version
• Term translation:

[□i] = p□i

λA B. Σ(R : reli A B)(e : A ≃ B).Πab.(R a b) ≃ (a = e−1b)
id□i

univ□i

[x] = xR

[A B] = [A] B B ′
[B]

[λx : A. t] = Π(x : A)(x ′
: A ′

)(xR : J A K x x ′
). [t]

[Πx : A. B] = pΠ [A] [B]

(
λf f ′

. Π(x : A)(x ′
: A ′

)(xR : J A K x x ′
). J B K(f x)(f ′ x ′

)

EquivΠJ A KeqJ B Keq

univΠ

)

• Type translation: J A K = [A].1 J A Keq = [A].2 J A Kcoh = [A].3

• Abstraction theorem: If Γ ⊢ t : T then J Γ K ⊢ [t] : J T K t t ′.
• Remark A: If Γ ⊢ A : □i then J Γ K ⊢ [A] : J□i K A A ′.
• Remark B: ⊢ [□i] : J□i+1 K □i □i .

Cohen, Crance, Mahboubi – Trocq – October 17nth, 2024 15

Univalent parametricity: standard version
• Term translation:

[□i] =

λA B. Σ(R : reli A B)(e : A ≃ B).Πab.(R a b) ≃ (a = e−1b)
id□i

univ□i

[x] = xR

[A B] = [A] B B ′
[B]

[λx : A. t] = Π(x : A)(x ′
: A ′

)(xR : J A K x x ′
). [t]

[Πx : A. B] =

(
λf f ′

. Π(x : A)(x ′
: A ′

)(xR : J A K x x ′
). J B K(f x)(f ′ x ′

)

EquivΠJ A KeqJ B Keq

univΠ

)
• Type translation: J A K = [A].1 J A Keq = [A].2 J A Kcoh = [A].3

• Abstraction theorem: If Γ ⊢ t : T then J Γ K ⊢ [t] : J T K t t ′.
• Remark A: If Γ ⊢ A : □i then J Γ K ⊢ [A] : J□i K A A ′.
• Remark B: ⊢ [□i] : J□i+1 K □i □i .

Cohen, Crance, Mahboubi – Trocq – October 17nth, 2024 15

Univalent parametricity: standard version
• Term translation:

[□i] =

λA B. Σ(R : reli A B)(e : A ≃ B).Πab.(R a b) ≃ (a = e−1b)
id□i

univ□i

[x] = xR

[A B] = [A] B B ′
[B]

[λx : A. t] = Π(x : A)(x ′
: A ′

)(xR : J A K x x ′
). [t]

[Πx : A. B] =

(
λf f ′

. Π(x : A)(x ′
: A ′

)(xR : J A K x x ′
). J B K(f x)(f ′ x ′

)

EquivΠJ A KeqJ B Keq

univΠ

)
• Type translation: J A K = [A].1 J A Keq = [A].2 J A Kcoh = [A].3

• Abstraction theorem: If Γ ⊢ t : T then J Γ K ⊢ [t] : J T K t t ′.

• Remark A: If Γ ⊢ A : □i then J Γ K ⊢ [A] : J□i K A A ′.
• Remark B: ⊢ [□i] : J□i+1 K □i □i .

Cohen, Crance, Mahboubi – Trocq – October 17nth, 2024 15

Univalent parametricity: standard version
• Term translation:

[□i] =

λA B. Σ(R : reli A B)(e : A ≃ B).Πab.(R a b) ≃ (a = e−1b)
id□i

univ□i

[x] = xR

[A B] = [A] B B ′
[B]

[λx : A. t] = Π(x : A)(x ′
: A ′

)(xR : J A K x x ′
). [t]

[Πx : A. B] =

(
λf f ′

. Π(x : A)(x ′
: A ′

)(xR : J A K x x ′
). J B K(f x)(f ′ x ′

)

EquivΠJ A KeqJ B Keq

univΠ

)
• Type translation: J A K = [A].1 J A Keq = [A].2 J A Kcoh = [A].3

• Abstraction theorem: If Γ ⊢ t : T then J Γ K ⊢ [t] : J T K t t ′.
• Remark A: If Γ ⊢ A : □i then J Γ K ⊢ [A] : J□i K A A ′.

• Remark B: ⊢ [□i] : J□i+1 K □i □i .

Cohen, Crance, Mahboubi – Trocq – October 17nth, 2024 15

Univalent parametricity: standard version
• Term translation:

[□i] =

λA B. Σ(R : reli A B)(e : A ≃ B).Πab.(R a b) ≃ (a = e−1b)
id□i

univ□i

[x] = xR

[A B] = [A] B B ′
[B]

[λx : A. t] = Π(x : A)(x ′
: A ′

)(xR : J A K x x ′
). [t]

[Πx : A. B] =

(
λf f ′

. Π(x : A)(x ′
: A ′

)(xR : J A K x x ′
). J B K(f x)(f ′ x ′

)

EquivΠJ A KeqJ B Keq

univΠ

)
• Type translation: J A K = [A].1 J A Keq = [A].2 J A Kcoh = [A].3

• Abstraction theorem: If Γ ⊢ t : T then J Γ K ⊢ [t] : J T K t t ′.
• Remark A: If Γ ⊢ A : □i then J Γ K ⊢ [A] : J□i K A A ′.
• Remark B: ⊢ [□i] : J□i+1 K □i □i .

Cohen, Crance, Mahboubi – Trocq – October 17nth, 2024 15

Univalent parametricity: standard version
• Term translation:

[□i] = p□i

λA B. Σ(R : reli A B)(e : A ≃ B).Πab.(R a b) ≃ (a = e−1b)
id□i

univ□i

[x] = xR

[A B] = [A] B B ′
[B]

[λx : A. t] = Π(x : A)(x ′
: A ′

)(xR : J A K x x ′
). [t]

[Πx : A. B] = pΠ [A] [B]

(
λf f ′

. Π(x : A)(x ′
: A ′

)(xR : J A K x x ′
). J B K(f x)(f ′ x ′

)

EquivΠJ A KeqJ B Keq

univΠ

)

• Type translation: J A K = [A].1 J A Keq = [A].2 J A Kcoh = [A].3

• Abstraction theorem: If Γ ⊢ t : T then J Γ K ⊢ [t] : J T K t t ′.
• Remark A: If Γ ⊢ A : □i then J Γ K ⊢ [A] : J□i K A A ′.
• Remark B: ⊢ [□i] : J□i+1 K □i □i .

Cohen, Crance, Mahboubi – Trocq – October 17nth, 2024 15

Univalent parametricity: sequent style

Ξ ⊢u □i ∼ □i ∵ p□i

(UParamSort)
(x, x ′

, xR) ∈ Ξ Ξ ⊢

Ξ ⊢u x ∼ x ′ ∵ xR
(UParamVar)

Ξ ⊢u M ∼ M ′ ∵ MR Ξ ⊢u N ∼ N ′ ∵ NR

Ξ ⊢u M N ∼ M ′ N ′ ∵ MR N N ′ NR
(UParamApp)

Ξ ⊢u A ∼ A ′ ∵ AR Ξ, x ∼ x ′ ∵ xR ⊢u M ∼ M ′ ∵ MR

Ξ ⊢u λx : A. M ∼ λx ′
: A ′

. M ′ ∵ λx x ′ xR . MR
(UParamLam)

Ξ ⊢u A ∼ A ′ ∵ AR Ξ, x ∼ x ′ ∵ xR ⊢u B ∼ B ′ ∵ BR

Ξ ⊢u Πx : A. B ∼ Πx ′
: A ′

. B ′ ∵ pΠ AR BR
(UParamPi)

Cohen, Crance, Mahboubi – Trocq – October 17nth, 2024 16

Univalent parametricity: sequent abstraction

We rephrase the Univalent parametricity abstraction theorem:

Γ ⊢ Γ ⊢ M : A Γ ▷ Ξ Ξ ⊢u M ∼ M ′ ∵ MR Ξ ⊢u A ∼ A ′ ∵ AR

Γ ⊢ M ′ : A ′ and Ξ ⊢u MR :
(
AR M M ′) .1

Remark A:
Γ ⊢ A : □i Ξ ⊢u A ∼ A ′ ∵ AR Γ ▷ Ξ

Γ ⊢u AR :
(
p□i A A ′) .1

Remark B:
⊢u p□i :

(
p□i+1 □i □i

)
.1

Cohen, Crance, Mahboubi – Trocq – October 17nth, 2024 17

Cohen, Crance, Mahboubi – Trocq – October 17nth, 2024 18

3
Type equivalence in a kit

Observation

The key datastructure in univalent parametricity is the one of relations which are the graph of
equivalences

�u A B ≜
(
Σ(R : A → B → □)(e : A ≃ B).Πab.(R a b) ≃ (a = e−1b)

)
.

The two following observations
• “inhabiting this structure triggers uses of univalence”,
• “it is not symmetric (one direction is privileged in e)”,

correspond exactly to the two achievements:
• change representation without univalence in some cases,
• change representation with partial isos in some cases.

Cohen, Crance, Mahboubi – Trocq – October 17nth, 2024 19

Observation

The key datastructure in univalent parametricity is the one of relations which are the graph of
equivalences

�u A B ≜
(
Σ(R : A → B → □)(e : A ≃ B).Πab.(R a b) ≃ (a = e−1b)

)
.

The two following observations
• “inhabiting this structure triggers uses of univalence”,
• “it is not symmetric (one direction is privileged in e)”,

correspond exactly to the two achievements:
• change representation without univalence in some cases,
• change representation with partial isos in some cases.

Cohen, Crance, Mahboubi – Trocq – October 17nth, 2024 19

Observation

The key datastructure in univalent parametricity is the one of relations which are the graph of
equivalences

�u A B ≜
(
Σ(R : A → B → □)(e : A ≃ B).Πab.(R a b) ≃ (a = e−1b)

)
.

The two following observations
• “inhabiting this structure triggers uses of univalence”,
• “it is not symmetric (one direction is privileged in e)”,

correspond exactly to the two achievements:
• change representation without univalence in some cases,
• change representation with partial isos in some cases.

Cohen, Crance, Mahboubi – Trocq – October 17nth, 2024 19

Disassembling type equivalence

• We use a variation of (exercise in the HoTT Book):

(A ≃ B) ≃ ΣR : A → B → □. IsFun(R) × IsFun(R−1)

with IsFun(R) ≜ Πa : A. IsContr(Σb : B. R a b)
R−1 ≜ λa b. R b a

• Then we remark IsFun(R) ≃ IsUmap(R), where

IsUmap(R) ≜ Σ(m : A → B).

Σ(g1 : Π(a : A)(b : B). m a = b → R a b).
Σ(g2 : Π(a : A)(b : B). R a b → m a = b).

Π(a : A)(b : B). (g1 a b) ◦ (g2 a b) ≑ id .

• We pose
�⊤ A B ≜ ΣR : A → B → □. IsUmap(R) × IsUmap(R−1)

Cohen, Crance, Mahboubi – Trocq – October 17nth, 2024 20

Disassembling type equivalence

• We use a variation of (exercise in the HoTT Book):

(A ≃ B) ≃ ΣR : A → B → □. IsFun(R) × IsFun(R−1)

with IsFun(R) ≜ Πa : A. IsContr(Σb : B. R a b)
R−1 ≜ λa b. R b a

• Then we remark IsFun(R) ≃ IsUmap(R), where

IsUmap(R) ≜ Σ(m : A → B).

Σ(g1 : Π(a : A)(b : B). m a = b → R a b).
Σ(g2 : Π(a : A)(b : B). R a b → m a = b).

Π(a : A)(b : B). (g1 a b) ◦ (g2 a b) ≑ id .

• We pose
�⊤ A B ≜ ΣR : A → B → □. IsUmap(R) × IsUmap(R−1)

Cohen, Crance, Mahboubi – Trocq – October 17nth, 2024 20

Disassembling type equivalence

• We use a variation of (exercise in the HoTT Book):

(A ≃ B) ≃ ΣR : A → B → □. IsFun(R) × IsFun(R−1)

with IsFun(R) ≜ Πa : A. IsContr(Σb : B. R a b)
R−1 ≜ λa b. R b a

• Then we remark IsFun(R) ≃ IsUmap(R), where

IsUmap(R) ≜ Σ(m : A → B).

Σ(g1 : Π(a : A)(b : B). m a = b → R a b).
Σ(g2 : Π(a : A)(b : B). R a b → m a = b).

Π(a : A)(b : B). (g1 a b) ◦ (g2 a b) ≑ id .

• We pose
�⊤ A B ≜ ΣR : A → B → □. IsUmap(R) × IsUmap(R−1)

Cohen, Crance, Mahboubi – Trocq – October 17nth, 2024 20

Reassembling type equivalence
For α = (n, k) ∈ A ≜ {0, 1, 2a, 2b, 3, 4}2, we pose:

�α ≜ λ(A B : □).Σ(R : A → B → □).Classα R
Classα R ≜ (Mn R) × (Mk R−1)

M0 R ≜ .

M1 R ≜ (A → B)

M2a R ≜ Σm : A → B. G2a m R
G2a m R ≜ Πa b. m a = b → R a b

M2b R ≜ Σm : A → B. G2b m R
G2b m R ≜ Πa b. R a b → m a = b

M3 R ≜ Σm : A → B. (G2a m R) × (G2b m R)

M4 R ≜ Σm : A → B. Σ(g1 : G2a m R). Σ(g2 : G2b m R).

Πa b. (g1 a b) ◦ (g1 a b) ≑ id

Cohen, Crance, Mahboubi – Trocq – October 17nth, 2024 21

The lattice of annotations A

rel(R) : A → B → □0

1map(R) : A → B

2a 2b

3

4

×

0

1 comap(R) : B → A

2a 2b

3

4univalent parametricity

Cohen, Crance, Mahboubi – Trocq – October 17nth, 2024 22

Fun facts about �·

• Noting ⊥ = (0, 0), �⊥ is equivalent to the data of a relation.
• Noting ⊤ = (4, 4), the definitions of �⊤ and �(4,4) coincide.
• �(4,0) A B is the same as a function A → B
• �(0,4) A B is the same as a function B → A
• �(4,2a) A B is the same as a split epi A ↠ B
• �(4,2b) A B is the same as a split mono A ↣ B

Cohen, Crance, Mahboubi – Trocq – October 17nth, 2024 23

The elements pα,β
□ of �β □ □

Let
D□ = {(α, β) ∈ A2

| α = ⊤ ∨ β ∈ {0, 1, 2a}
2
}

For all (α, β) ∈ D□ we can define pα,β
□ such that

⊢u pα,β
□ : �β□ □ and rel(pα,β

□) ≡ �α

�β □ □ may have several inhabitants
A translation must explain which one to target.
We need to annotate □ everywhere!

Cohen, Crance, Mahboubi – Trocq – October 17nth, 2024 24

The elements pα,β
□ of �β □ □

Let
D□ = {(α, β) ∈ A2

| α = ⊤ ∨ β ∈ {0, 1, 2a}
2
}

For all (α, β) ∈ D□ we can define pα,β
□ such that

⊢u pα,β
□ : �β□ □ and rel(pα,β

□) ≡ �α

�β □ □ may have several inhabitants
A translation must explain which one to target.
We need to annotate □ everywhere!

Cohen, Crance, Mahboubi – Trocq – October 17nth, 2024 24

Cohen, Crance, Mahboubi – Trocq – October 17nth, 2024 25

4
Trocq

Annotating

M, N, A, B ∈ TCC+
ω

::= □α
i | x | M N | λx : A. M | Πx : A. B Γ ⊢+ M : A Γ ⊢+ A ≼ B

Γ ⊢+ M : B
(Conv+

)

(α, β) ∈ D□

Γ ⊢+ □α
i : □β

i+1

(Sort+
)

(x, A) ∈ Γ Γ ⊢+

Γ ⊢+ x : A
(Var+

)
Γ ⊢+ A : □i x /∈ Var(Γ)

Γ, x : A ⊢+
(Context+

)

Γ ⊢+ M : Πx : A. B Γ ⊢+ N : A
Γ ⊢+ M N : B[x := N]

(App+)
Γ, x : A ⊢+ M : B

Γ ⊢+ λx : A. M : Πx : A. B
(Lam+

)

Γ ⊢+ A : □α
i Γ ⊢+ B : □β

i D→(γ) = (α, β)

Γ ⊢+ A → B : □γ
i

(Arrow+
)

Γ ⊢+ A : □α
i Γ, x : A ⊢+ B : □β

i DΠ (γ) = (α, β)

Γ ⊢+ Πx : A. B : □γ
i

(Pi+)

Cohen, Crance, Mahboubi – Trocq – October 17nth, 2024 26

Subtyping

Γ ⊢+ A : K Γ ⊢+ B : K A ≡ B
Γ ⊢+ A ≼ B

(SubConv)
α ≥ β i ≤ j

Γ ⊢+ □α
i ≼ □β

j

(SubSort)

Γ ⊢+ M ′ N : K Γ ⊢+ M ≼ M ′

Γ ⊢+ M N ≼ M ′ N
(SubApp)

Γ, x : A ⊢+ M ≼ M ′

Γ ⊢+ λx : A. M ≼ λx : A. M ′ (SubLam)

Γ ⊢+ Πx : A. B : □i Γ ⊢+ A ′ ≼ A Γ, x : A ′ ⊢+ B ≼ B ′

Γ ⊢+ Πx : A. B ≼ Πx : A ′
. B ′ (SubPi) K ::= □i | Πx : A. K

Cohen, Crance, Mahboubi – Trocq – October 17nth, 2024 27

Calculus for Trocq

(α, β) ∈ D□

∆ ⊢t □α
i @ □β

i+1 ∼ □α
i ∵ pα,β

□i

(TrocqSort)
(x, A, x ′

, xR) ∈ ∆ . . .

∆ ⊢t x @ A ∼ x ′ ∵ xR
(TrocqVar)

∆ ⊢t M @ Πx : A. B ∼ M ′ ∵ MR ∆ ⊢t N @ A ∼ N ′ ∵ NR

∆ ⊢t M N @ B[x := N] ∼ M ′ N ′ ∵ MR N N ′ NR
(TrocqApp)

∆ ⊢t A @ □α
i ∼ A ′ ∵ AR ∆, x @ A ∼ x ′ ∵ xR ⊢t M @ B ∼ M ′ ∵ MR

∆ ⊢t λx : A. M @ Πx : A. B ∼ λx ′
: A ′

. M ′ ∵ λx x ′ xR . MR
(TrocqLam)

∆ ⊢t A @ □α
i ∼ A ′ ∵ AR ∆ ⊢t B @ □β

i ∼ B ′ ∵ BR (α, β) = D→(δ)

∆ ⊢t A → B @ □δ
i ∼ A ′ → B ′ ∵ pδ→ AR BR

(TrocqArrow)

∆ ⊢t A @ □α
i ∼ A ′ ∵ AR ∆, x @ A ∼ x ′ ∵ xR ⊢t B @ □β

i ∼ B ′ ∵ BR (α, β) = DΠ (δ)

∆ ⊢t Πx : A. B @ □δ
i ∼ Πx ′

: A ′
. B ′ ∵ pδ

Π AR BR
(TrocqPi)

∆ ⊢t M @ A ∼ M ′ ∵ MR γ(∆) ⊢+ A ≼ B

∆ ⊢t M @ B ∼ M ′ ∵ ⇓A
B MR

(TrocqConv)

Cohen, Crance, Mahboubi – Trocq – October 17nth, 2024 28

Abstraction Theorem for Trocq

We have:

γ(∆) ⊢+ γ(∆) ⊢+ M : A ∆ ⊢t M @ A ∼ M ′ ∵ MR ∆ ⊢t A @ □α
i ∼ A ′ ∵ AR

γ(∆) ⊢+ M ′ : A ′ and γ(∆) ⊢+ MR : rel(AR) M M ′

Remark A:
γ(∆) ⊢+ A : □α ∆ ⊢t A @ □α

∼ A ′ ∵ AR

γ(∆) ⊢+ AR : �α A A ′ .

Remark B:
⊢+ pα,β

□ : �β □α □α

Cohen, Crance, Mahboubi – Trocq – October 17nth, 2024 29

Cohen, Crance, Mahboubi – Trocq – October 17nth, 2024 30

5
Extra material

The elements pδ
Π of �δ (ΠA.B) (ΠA ′.B ′)

We need to identify the triples (α, β, δ) ∈ A3 for which it is possible to construct a term pδ
Π such that:

δ ⊢ AR : �α A A ′ δ, x : A, x ′ : A ′, xR : AR x x ′ ⊢ BR : �β B B ′

δ ⊢ pδ
Π AR BR : �δ (Πx : A. B) (Πx ′ : A ′. B ′)

and

rel(pδ
Π AR BR) ≡ λf .λf ′.Π(x : A)(x ′ : A ′)(xR : rel(AR) x x ′).

rel(BR) (f x) (f x ′)

We prove that pδ
Π exists for all (α, β) ∈ Dπ(δ), where . . .

Cohen, Crance, Mahboubi – Trocq – October 17nth, 2024 31

The elements pδ
Π of �δ (ΠA.B) (ΠA ′.B ′)

We need to identify the triples (α, β, δ) ∈ A3 for which it is possible to construct a term pδ
Π such that:

δ ⊢ AR : �α A A ′ δ, x : A, x ′ : A ′, xR : AR x x ′ ⊢ BR : �β B B ′

δ ⊢ pδ
Π AR BR : �δ (Πx : A. B) (Πx ′ : A ′. B ′)

and

rel(pδ
Π AR BR) ≡ λf .λf ′.Π(x : A)(x ′ : A ′)(xR : rel(AR) x x ′).

rel(BR) (f x) (f x ′)

We prove that pδ
Π exists for all (α, β) ∈ Dπ(δ), where . . .

Cohen, Crance, Mahboubi – Trocq – October 17nth, 2024 31

Definition of DΠ(δ)

For any δ ∈ A:
DΠ(δ) = DΠ(δ1, 0)∨ DΠ(δ2, 0)−1

Where for all α, β ∈ A

(α, β)−1 ≜ (α−1, β−1)

α−1 ≜ (α2, α1)

(α, β)∨ (α ′, β ′) ≜ (α ∨ α ′, β ∨ β ′)

α ∨ β ≜ (α1 ∨ β1, α2 ∨ β2)

Thus, it suffices to define DΠ(m, 0) for all m ∈ {0, 1, 2a, 2b, 3, 4}
The same holds for D→(δ).

Cohen, Crance, Mahboubi – Trocq – October 17nth, 2024 32

Definition of DΠ(δ)

For any δ ∈ A:
DΠ(δ) = DΠ(δ1, 0)∨ DΠ(δ2, 0)−1

Where for all α, β ∈ A

(α, β)−1 ≜ (α−1, β−1)

α−1 ≜ (α2, α1)

(α, β)∨ (α ′, β ′) ≜ (α ∨ α ′, β ∨ β ′)

α ∨ β ≜ (α1 ∨ β1, α2 ∨ β2)

Thus, it suffices to define DΠ(m, 0) for all m ∈ {0, 1, 2a, 2b, 3, 4}
The same holds for D→(δ).

Cohen, Crance, Mahboubi – Trocq – October 17nth, 2024 32

Definition of DΠ(m, 0) and D→(m, 0)

m DΠ(m, 0)1 DΠ(m, 0)2
0 (0, 0) (0, 0)
1 (0, 2a) (1, 0)
2a (0, 4) (2a, 0)
2b (0, 2a) (2b, 0)
3 (0, 4) (3, 0)
4 (0, 4) (4, 0)

m D→(m, 0)1 D→(m, 0)2
0 (0, 0) (0, 0)
1 (0, 1) (1, 0)
2a (0, 2b) (2a, 0)
2b (0, 2a) (2b, 0)
3 (0, 3) (3, 0)
4 (0, 4) (4, 0)

Cohen, Crance, Mahboubi – Trocq – October 17nth, 2024 33

Cohen, Crance, Mahboubi – Trocq – October 17nth, 2024 34

6
Conclusion

Comparison

Maga
ud

[10
]

Set
oid

rw
. [12

]

Coq
EAL [5]

Tran
sfe

r [6–
9]

ZH
[15

]

TTS [14
]

ACMZ [1]

Trac
kt

[3]

Tro
cq

Heterogeneous relations ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Internal ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

No anticipation ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓

Substitution under ∀ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓

Substitution in dep. types ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✓

No univalence for ? ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓

Preorder relations ✗ ✓ ? ? ? ✗ ? ? ✐

Subrelations ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✐

QERs ✗ ✐ ➡ ➡ ➡ ✗ ✓ ✗ ➡

Subtyping relations ✗ ✗ ➡ ➡ ➡ ✗ ✗ ➡ ➡

System Coq
Coq

Coq
Isabelle/HOL

Coq
Coq/HoTT

(Cubical) Agda

Coq
Coq or Coq/HoTT

Cohen, Crance, Mahboubi – Trocq – October 17nth, 2024 35

Bring home

• Change representation without univalence in some cases.
• Change representation with partial isos in some cases.

In our current version,
• univalence is required if and only if there is some □α such that α ≥ (2b, 0) or α ≥ (0, 2b) occurs in

the derivation.
• reducing a goal G to an hypothesis H corresponds to finding an element �(0,1) G H (i.e. an arrow

H → G). If the body of G and H have the right variance, we might keep the invariant that nothing
more than the partial isos □(4,2a), □(4,2b),□(2a,4) or □(2b,4) are required on given types.

In the future (with a bit more work), we may unify
• CoqEAL
• Univalent paramericity
• Generalized (Setoid) rewriting

Cohen, Crance, Mahboubi – Trocq – October 17nth, 2024 36

Cohen, Crance, Mahboubi – Trocq – October 17nth, 2024 37

7
Bibliography

bibliography I

[1] Carlo Angiuli et al. “Internalizing representation independence with univalence”. In: Proc. ACM
Program. Lang. 5.POPL (2021), pp. 1–30. doi: 10.1145/3434293. url:
https://doi.org/10.1145/3434293.

[2] Jean-Philippe Bernardy and Marc Lasson. “Realizability and Parametricity in Pure Type Systems”.
In: Foundations of Software Science and Computational Structures - 14th International Conference,
FOSSACS 2011, Held as Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2011, Saarbrücken, Germany, March 26-April 3, 2011. Proceedings. Ed. by
Martin Hofmann. Vol. 6604. Lecture Notes in Computer Science. Springer, 2011, pp. 108–122. doi:
10.1007/978-3-642-19805-2_8. url: https://doi.org/10.1007/978-3-642-19805-2_8.

[3] Valentin Blot et al. “Compositional Pre-processing for Automated Reasoning in Dependent Type
Theory”. In: Proceedings of the 12th ACM SIGPLAN International Conference on Certified
Programs and Proofs, CPP 2023, Boston, MA, USA, January 16-17, 2023. Ed. by
Robbert Krebbers et al. ACM, 2023, pp. 63–77. doi: 10.1145/3573105.3575676. url:
https://doi.org/10.1145/3573105.3575676.

Cohen, Crance, Mahboubi – Trocq – October 17nth, 2024 38

https://doi.org/10.1145/3434293
https://doi.org/10.1145/3434293
https://doi.org/10.1007/978-3-642-19805-2_8
https://doi.org/10.1007/978-3-642-19805-2_8
https://doi.org/10.1145/3573105.3575676
https://doi.org/10.1145/3573105.3575676

bibliography II

[4] Cyril Cohen, Enzo Crance, and Assia Mahboubi. “Artifact Report: Trocq: Proof Transfer for Free,
With or Without Univalence”. In: ESOP 2024 - 33rd European Symposium on Programming.
Vol. LNCS-14576. Programming Languages and Systems 33rd European Symposium on
Programming, ESOP 2024, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2024, Luxembourg City, Luxembourg, April 6–11, 2024, Proceedings,
Part I. Luxembourg, Luxembourg: Springer Nature Switzerland, Apr. 2024, pp. 269–274. doi:
10.1007/978-3-031-57262-3_11. url: https://inria.hal.science/hal-04623207.

[5] Cyril Cohen, Maxime Dénès, and Anders Mörtberg. “Refinements for Free!” In: Certified Programs
and Proofs - Third International Conference, CPP 2013, Melbourne, VIC, Australia, December
11-13, 2013, Proceedings. Ed. by Georges Gonthier and Michael Norrish. Vol. 8307. Lecture Notes
in Computer Science. Springer, 2013, pp. 147–162. doi: 10.1007/978-3-319-03545-1_10. url:
https://doi.org/10.1007/978-3-319-03545-1_10.

[6] Florian Haftmann et al. “Data Refinement in Isabelle/HOL”. In: Interactive Theorem Proving.
Ed. by Sandrine Blazy, Christine Paulin-Mohring, and David Pichardie. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2013, pp. 100–115. isbn: 978-3-642-39634-2.

Cohen, Crance, Mahboubi – Trocq – October 17nth, 2024 39

https://doi.org/10.1007/978-3-031-57262-3_11
https://inria.hal.science/hal-04623207
https://doi.org/10.1007/978-3-319-03545-1_10
https://doi.org/10.1007/978-3-319-03545-1_10

bibliography III

[7] Brian Huffman and Ondřej Kunčar. “Lifting and Transfer: A Modular Design for Quotients in
Isabelle/HOL”. In: Certified Programs and Proofs. Ed. by Georges Gonthier and Michael Norrish.
Cham: Springer International Publishing, 2013, pp. 131–146. isbn: 978-3-319-03545-1.

[8] Peter Lammich. “Automatic Data Refinement”. In: Interactive Theorem Proving. Ed. by
Sandrine Blazy, Christine Paulin-Mohring, and David Pichardie. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, pp. 84–99. isbn: 978-3-642-39634-2.

[9] Peter Lammich and Andreas Lochbihler. “Automatic Refinement to Efficient Data Structures: A
Comparison of Two Approaches”. In: J. Autom. Reason. 63.1 (2019), pp. 53–94. doi:
10.1007/s10817-018-9461-9. url: https://doi.org/10.1007/s10817-018-9461-9.

[10] Nicolas Magaud. “Changing Data Representation within the Coq System”. In: TPHOLs’2003.
Vol. 2758. © Springer-Verlag. LNCS, Springer-Verlag, 2003. url:
http://www.springerlink.com/openurl.asp?genre=article&issn=0302-
9743&volume=2758&spage=87.

Cohen, Crance, Mahboubi – Trocq – October 17nth, 2024 40

https://doi.org/10.1007/s10817-018-9461-9
https://doi.org/10.1007/s10817-018-9461-9
http://www.springerlink.com/openurl.asp?genre=article&issn=0302-9743&volume=2758&spage=87
http://www.springerlink.com/openurl.asp?genre=article&issn=0302-9743&volume=2758&spage=87

bibliography IV

[11] The Mathematical Components Team. Mathematical Components Library.
https://github.com/math-comp/math-comp. Last stable version: 2.1 (2023). 2007.

[12] Matthieu Sozeau. “A New Look at Generalized Rewriting in Type Theory”. In: J. Formaliz. Reason.
2.1 (2009), pp. 41–62. doi: 10.6092/issn.1972-5787/1574. url:
https://doi.org/10.6092/issn.1972-5787/1574.

[13] Nicolas Tabareau, Éric Tanter, and Matthieu Sozeau. “Equivalences for free: univalent
parametricity for effective transport”. In: Proceedings of the ACM on Programming Languages
2.ICFP (2018), pp. 1–29.

[14] Nicolas Tabareau, Éric Tanter, and Matthieu Sozeau. “The marriage of univalence and
parametricity”. In: Journal of the ACM (JACM) 68.1 (2021), pp. 1–44.

[15] Théo Zimmermann and Hugo Herbelin. “Automatic and Transparent Transfer of Theorems along
Isomorphisms in the Coq Proof Assistant”. In: Conference on Intelligent Computer Mathematics.
Washington, D.C., United States, 2015. url: https://hal.science/hal-01152588.

Cohen, Crance, Mahboubi – Trocq – October 17nth, 2024 41

https://github.com/math-comp/math-comp
https://doi.org/10.6092/issn.1972-5787/1574
https://doi.org/10.6092/issn.1972-5787/1574
https://hal.science/hal-01152588

	Old and new examples
	Revisiting parametricity and univalent parametricity
	Type equivalence in a kit
	Trocq
	Extra material
	Conclusion
	Bibliography
	References

