

Trocq: Proof Transfer for Free, With or Without Univalence

Cyril Cohen¹, Enzo Crance^{2,3}, Assia Mahboubi³

¹Université Côte d'Azur, Inria, France
 ²Mitsubishi Electric R&D Centre Europe, France
 ³Nantes Université, École Centrale Nantes, CNRS, INRIA, LS2N, UMR 6004, France

Liber Abaci October 17^{nth}, 2024

I am working with a proof assistant with a trusted kernel in DTT. (E.g. Coq, Lean, Agda, ...)

- I want to get a concrete value within the proof assistants, e.g. withing Coq/MATHCOMP [11]:
 - $\begin{array}{c|cccc} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{array} = -2, \mbox{ but computation is locked } \end{array}$

Inría

I am working with a proof assistant with a trusted kernel in DTT. (E.g. Coq, Lean, Agda, ...)

- I want to get a concrete value within the proof assistants, e.g. withing Coq/MATHCOMP [11]:
 - $\begin{array}{c|c} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \\ \hline \end{array} = -2, \mbox{ but computation is locked } \\ \end{array}$

Inría

I am working with a proof assistant with a trusted kernel in DTT. (E.g. Coq, Lean, Agda, ...)

- I want to get a concrete value within the proof assistants, e.g. withing Coq/MATHCOMP [11]:
 - $\begin{array}{c|c} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{array} = -2, \text{ but computation is locked} \\ \rightarrow I \text{ want to "unlock"} \\ \hline \text{prime}(29986577) = \top, \text{ but computation takes} > 2 \text{min} \end{array}$

I am working with a proof assistant with a trusted kernel in DTT. (E.g. Coq, Lean, Agda, ...)

• I want to get a concrete value within the proof assistants, e.g. withing Coq/MATHCOMP [11]:

```
 \begin{array}{c|c|c|c|c|c|} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{array} = -2, \mbox{ but computation is locked} \\ \hline \rightarrow \mbox{ I want to "unlock"} \\ \hline \mbox{ prime}(29986577) = \top, \mbox{ but computation takes} > 2\mbox{min} \\ \hline \rightarrow \mbox{ I want to run an optimized algorithm} \end{array}
```

naín

I am working with a proof assistant with a trusted kernel in DTT. (E.g. Coq, Lean, Agda, ...)

• I want to get a concrete value within the proof assistants, e.g. withing Coq/MATHCOMP [11]:

```
 \begin{array}{c|c|c|c|c|c|c|} \hline 1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \\ \hline \end{array} = -2, \text{ but computation is locked} \\ \hline \rightarrow I \text{ want to "unlock"} \\ \hline \\ \text{prime}(29986577) = \top, \text{ but computation takes} > 2 \text{min} \\ \hline \rightarrow I \text{ want to run an optimized algorithm} \\ \end{array}
```

My goal is about a given type, but my lemma is about an equivalent one.
 E.g. I want ∀x : B, x ⊕ x = ⊥

I am working with a proof assistant with a trusted kernel in DTT. (E.g. Coq, Lean, Agda, ...)

• I want to get a concrete value within the proof assistants, e.g. withing Coq/MATHCOMP [11]:

```
 \begin{vmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{vmatrix} = -2, \text{ but computation is locked} 
 \rightarrow I \text{ want to "unlock"} 
 - prime(29986577) = T, \text{ but computation takes } 2 \text{min} 
 \rightarrow I \text{ want to run an optimized algorithm}
```

- My goal is about a given type, but my lemma is about an equivalent one.
 - E.g. I want $\forall x : \mathbb{B}, x \oplus x = \bot$
 - \rightarrow but I have $\forall x : \mathbb{Z}/2\mathbb{Z}, x + x = 0$

I am working with a proof assistant with a trusted kernel in DTT. (E.g. Coq, Lean, Agda, ...)

• I want to get a concrete value within the proof assistants, e.g. withing Coq/MATHCOMP [11]:

```
 \begin{vmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{vmatrix} = -2, \text{ but computation is locked} 
 \rightarrow I \text{ want to "unlock"} 
 - prime(29986577) = T, \text{ but computation takes } 2 \text{min} 
 \rightarrow I \text{ want to run an optimized algorithm}
```

- My goal is about a given type, but my lemma is about an equivalent one.
 E.g. I want ∀x : B, x ⊕ x = ⊥
 - \rightarrow but I have $\forall x : \mathbb{Z}/2\mathbb{Z}, x + x = 0$

Context and motivation

Some previous work answering exactly the questions above

- CoqEAL [5] (Cano, me, Dénès, Martin-Dorel, Mörtberg, Rouhling, Roux, Siles), does data transfer.
- Univalent Parametricity [13, 14] (Sozeau, Tabareau, Tanter), changes representation using univalence.

nnín

Context and motivation

Some previous work answering exactly the questions above

- CoqEAL [5] (Cano, me, Dénès, Martin-Dorel, Mörtberg, Rouhling, Roux, Siles), does data transfer.
- Univalent Parametricity [13, 14] (Sozeau, Tabareau, Tanter), changes representation using univalence.

This work generalizes both. Indeed we may

- change representation without univalence in some cases,
- change representation with partial isos in some cases.

Comparison to other previous work in the paper.

Troc ^[tsok] subst. masc. Échange direct de biens sans intervention de monnaie.

 \sim "A direct exchange of goods without the use of money"

CNRTL

nnía

Troc ^[tsok] subst. masc. Échange direct de biens sans intervention de monnaie.

 \sim "A direct exchange of goods without the use of money"

(Proof) Transfer for Rocq

Assia, Cyril, Enzo

CNRTL

nnía

Troc ^[tsok] subst. masc. Échange direct de biens sans intervention de monnaie.

 \sim "A direct exchange of goods without the use of money"

(Proof) Transfer for Rocq

Assia, Cyril, Enzo

CNRTI

It's a calculus, an Elpi implementation of it and a **prototype** associated tactic

nnín

Troc [tsok] subst. masc. Échange direct de biens sans intervention de monnaie.

 \sim "A direct exchange of goods without the use of money"

(Proof) Transfer for Rocq

Assia, Cyril, Enzo

It's a calculus, an Elpi implementation of it and a prototype associated tactic

[Cyril Cohen, Enzo Crance, and Assia Mahboubi. "Artifact Report: Trocq: Proof Transfer for Free, With or Without Univalence". In: ESOP 2024 - 33rd European Symposium on Programming. Vol. LNCS-14576. Programming Languages and Systems 33rd European Symposium on Programming, ESOP 2024, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2024, Luxembourg City, Luxembourg, April 6–11, 2024, Proceedings, Part I. Luxembourg, Luxembourg: Springer Nature Switzerland, Apr. 2024, pp. 269–274. DOI: 10.1007/978-3-031-57262-3_11. URL: https://inria.hal.science/hal=04623207]

Old and new examples

The canonical example

We have the standard definition of Peano natural numbers (stdlib)

Inductive $\mathbb{N} := 0_{\mathbb{N}} : \mathbb{N} | S_{\mathbb{N}} (n : \mathbb{N}) : \mathbb{N}$.

For which, we have:

 $\mathbb{N}_{\mathsf{ind}} \ : \ \forall \ P \ : \ \mathbb{N} \ \to \ \Box, \ P \ O_{\mathbb{N}} \ \to \ (\forall \ n \ : \ \mathbb{N}, \ P \ n \ \to P \ (S \ n)) \ \to \ \forall \ n \ : \ \mathbb{N}, \ P \ n$

Inría

The canonical example

We have the standard definition of Peano natural numbers (stdlib)

 $\text{Inductive } \mathbb{N} := \mathbf{0}_{\mathbb{N}} \ : \ \mathbb{N} \ \mid \ \mathbf{S}_{\mathbb{N}} \ (n \ : \ \mathbb{N}) \ : \ \mathbb{N}.$

For which, we have:

 $\mathbb{N}_{\mathsf{ind}}\ :\ \forall\ P\ :\ \mathbb{N}\ \rightarrow\ \Box,\ P\ 0_{\mathbb{N}}\ \rightarrow\ (\forall\ n\ :\ \mathbb{N},\ P\ n\ \rightarrow\ P\ (S\ n))\ \rightarrow\ \forall\ n\ :\ \mathbb{N},\ P\ n$

Here is an alternative binary representation (stdlib)

The canonical example

We have the standard definition of Peano natural numbers (stdlib)

 $\texttt{Inductive } \mathbb{N} \, := \, 0_{\mathbb{N}} \ : \ \mathbb{N} \ \mid \ S_{\mathbb{N}} \ (n \ : \ \mathbb{N}) \ : \ \mathbb{N}.$

For which, we have:

 $\mathbb{N}_{\mathsf{ind}}\ :\ \forall\ P\ :\ \mathbb{N}\ \rightarrow\ \Box,\ P\ 0_{\mathbb{N}}\ \rightarrow\ (\forall\ n\ :\ \mathbb{N},\ P\ n\ \rightarrow\ P\ (S\ n))\ \rightarrow\ \forall\ n\ :\ \mathbb{N},\ P\ n$

Here is an alternative binary representation (stdlib)

```
\begin{array}{l} \mbox{Fixpoint $S_{pos}$ (p:pos): pos:=match $p$ with} \\ \mbox{xH} \end{tabular} xH \end{tabular} x0 \end{tabular} p \end{tabular} xH \end{tabular} p \end{tabular} xI \end{tabular} p \end{tabular} xH \end{tabular} p \end{tabular} xI \end{tabular} p \end{tab
```

We want

```
\texttt{N}_{\mathsf{ind}}\ :\ \forall\ \texttt{P}\ :\ \texttt{N}\ \rightarrow\ \Box,\ \texttt{P}\ \texttt{O}_{\mathsf{N}}\ \rightarrow\ (\forall\ \texttt{n}\ :\ \texttt{N},\ \texttt{P}\ \texttt{n}\ \rightarrow\ \texttt{P}\ (\texttt{S}\ \texttt{n}))\ \rightarrow\ \forall\ \texttt{n}\ :\ \texttt{N},\ \texttt{P}\ \texttt{n}
```

nría

- 2. Reduction modulo, e.g.
 - *n* is a square and a cube \implies $n = 0 \text{ or } 1 \mod 7$,

naín

- 2. Reduction modulo, e.g.

 - *n* is a square and a cube \implies *n* = 0 or 1 mod 7, 3 ∤ *abc* \implies *a*³ + *b*³ ≠ *c*³ by reduction modulo 9.

nnin

- 2. Reduction modulo, e.g.

 - *n* is a square and a cube \implies *n* = 0 or 1 mod 7, 3 ∤ *abc* \implies *a*³ + *b*³ ≠ *c*³ by reduction modulo 9.
- **3.** Problems "created by the use of type theory", e.g. what is the type of deg(P) for $P \in \mathbb{R}[X]$?

- 2. Reduction modulo, e.g.

 - *n* is a square and a cube \implies *n* = 0 or 1 mod 7, 3 ∤ *abc* \implies *a*³ + *b*³ ≠ *c*³ by reduction modulo 9.
- **3.** Problems "created by the use of type theory", e.g. what is the type of deg(P) for $P \in \mathbb{R}[X]$? - deg : $\mathbb{R}[X] \to \mathbb{N}$

- 2. Reduction modulo, e.g.

 - *n* is a square and a cube \implies *n* = 0 or 1 mod 7, 3 ∤ *abc* \implies *a*³ + *b*³ ≠ *c*³ by reduction modulo 9.
- **3.** Problems "created by the use of type theory", e.g. what is the type of deg(P) for $P \in \mathbb{R}[X]$?
 - deg : $\mathbb{R}[X] \to \mathbb{N}$
 - or deg : $\mathbb{R}[X] \to \mathbb{N} \cup \{-\infty\}$.

1. Computing the degree of a polynomial, e.g. $deg((2X + X^5 + 1)X^2) = 7$.

- 2. Reduction modulo, e.g.

 - *n* is a square and a cube \implies *n* = 0 or 1 mod 7, 3 ∤ *abc* \implies *a*³ + *b*³ ≠ *c*³ by reduction modulo 9.
- **3.** Problems "created by the use of type theory", e.g. what is the type of deg(P) for $P \in \mathbb{R}[X]$?

.

- deg : $\mathbb{R}[X] \to \mathbb{N}$
- or deg : $\mathbb{R}[X] \to \mathbb{N} \cup \{-\infty\}$.

Mathlib has

nín

1. Computing the degree of a polynomial, e.g. $deg((2X + X^5 + 1)X^2) = 7$.

- 2. Reduction modulo, e.g.

 - *n* is a square and a cube \implies *n* = 0 or 1 mod 7, 3 ∤ *abc* \implies *a*³ + *b*³ ≠ *c*³ by reduction modulo 9.
- **3.** Problems "created by the use of type theory", e.g. what is the type of deg(P) for $P \in \mathbb{R}[X]$?
 - deg : $\mathbb{R}[X] \to \mathbb{N}$
 - or deg : $\mathbb{R}[X] \to \mathbb{N} \cup \{-\infty\}$.

Mathlib has both: Polynomial.degree and Polynomial.natDegree.

1. Computing the degree of a polynomial, e.g. $deg((2X + X^5 + 1)X^2) = 7$.

- 2. Reduction modulo, e.g.

 - *n* is a square and a cube \implies *n* = 0 or 1 mod 7, 3 ∤ *abc* \implies *a*³ + *b*³ ≠ *c*³ by reduction modulo 9.
- **3.** Problems "created by the use of type theory", e.g. what is the type of deg(P) for $P \in \mathbb{R}[X]$?
 - deg : $\mathbb{R}[X] \to \mathbb{N}$
 - or deg : $\mathbb{R}[X] \to \mathbb{N} \cup \{-\infty\}$.

Mathlib has both: Polynomial.degree and Polynomial.natDegree. Mathcomp has

1. Computing the degree of a polynomial, e.g. $deg((2X + X^5 + 1)X^2) = 7$.

- 2. Reduction modulo, e.g.
 - *n* is a square and a cube \implies n = 0 or $1 \mod 7$,
 - $-3 \nmid abc \implies a^3 + b^3 \neq c^3$ by reduction modulo 9.
- **3.** Problems "created by the use of type theory", e.g. what is the type of deg(P) for $P \in \mathbb{R}[X]$?
 - $\operatorname{-} \operatorname{deg}: \mathbb{R}[X] \to \mathbb{N}$
 - or deg : $\mathbb{R}[X] \to \mathbb{N} \cup \{-\infty\}$.

Mathlib has both: Polynomial.degree and Polynomial.natDegree. Mathcomp has neither, uses size : $\mathbb{R}[X] \to \mathbb{N}$.

1. Computing the degree of a polynomial, e.g. $deg((2X + X^5 + 1)X^2) = 7$.

- 2. Reduction modulo, e.g.

 - *n* is a square and a cube \implies *n* = 0 or 1 mod 7, 3 ∤ *abc* \implies *a*³ + *b*³ ≠ *c*³ by reduction modulo 9.
- **3.** Problems "created by the use of type theory", e.g. what is the type of deg(P) for $P \in \mathbb{R}[X]$?
 - deg : $\mathbb{R}[X] \to \mathbb{N}$
 - or deg : $\mathbb{R}[X] \to \mathbb{N} \cup \{-\infty\}$.

Mathlib has both: Polynomial.degree and Polynomial.natDegree. Mathcomp has neither, uses size : $\mathbb{R}[X] \to \mathbb{N}$. In set theory $\mathbb{N} \subseteq \mathbb{N} \cup \{-\infty\}$, but in type theory $\mathbb{N} \hookrightarrow \mathbb{N} \cup \{-\infty\}$.

1. Computing the degree of a polynomial, e.g. $deg((2X + X^5 + 1)X^2) = 7$.

- 2. Reduction modulo, e.g.
 - *n* is a square and a cube \implies n = 0 or 1 mod 7,
 - 3 ∤ *abc* \implies $a^3 + b^3 \neq c^3$ by reduction modulo 9. \Rightarrow Proof of Concept Demo
- **3.** Problems "created by the use of type theory", e.g. what is the type of deg(P) for $P \in \mathbb{R}[X]$?
 - $\operatorname{-} \operatorname{deg}: \mathbb{R}[X] \to \mathbb{N}$
 - or deg : $\mathbb{R}[X] \to \mathbb{N} \cup \{-\infty\}$.

Mathlib has both: Polynomial.degree and Polynomial.natDegree. Mathcomp has neither, uses size : $\mathbb{R}[X] \to \mathbb{N}$. In set theory $\mathbb{N} \subseteq \mathbb{N} \cup \{-\infty\}$, but in type theory $\mathbb{N} \hookrightarrow \mathbb{N} \cup \{-\infty\}$.

Planned integration of Trocqto Coq

dreaming...

1. Computing the degree of a polynomial, e.g. $deg((2X + X^5 + 1)X^2) = 7$.

decide (* := by rewrite computable; vm_compute. *)

(decide is the name of the equivalent lean tactic)

2. Reduction modulo, e.g.

naío-

$$n$$
 is a square and a cube \implies $n = 0$ or $1 \mod 7$,

 $a^3 + abc \implies a^3 + b^3 \neq c^3$ by reduction modulo 9.

by rewrite (Qmod 9); decide. (* where mod : $\forall \{n\}, Z \rightarrow Z/nZ *$)

3. Problems "created by type theory", e.g. in set theory $\mathbb{N} \subseteq \mathbb{N} \cup \{-\infty\}$, but in type theory $\mathbb{N} \hookrightarrow \mathbb{N} \cup \{-\infty\}$.

- either use rewrite -Fin (* where Fin : N ->\bar N *)

Planned integration of Trocqto Coq

dreaming...

1. Computing the degree of a polynomial, e.g. $deg((2X + X^5 + 1)X^2) = 7$.

decide (* := by rewrite computable; vm_compute. *)

(decide is the name of the equivalent lean tactic)

2. Reduction modulo, e.g.

$$n$$
 is a square and a cube \implies $n = 0$ or $1 \mod 7$,

 $a^3 + abc \implies a^3 + b^3 \neq c^3$ by reduction modulo 9.

by rewrite (Qmod 9); decide. (* where mod : $\forall \{n\}, Z \rightarrow Z/nZ *$)

3. Problems "created by type theory", e.g. in set theory $\mathbb{N} \subseteq \mathbb{N} \cup \{-\infty\}$, but in type theory $\mathbb{N} \hookrightarrow \mathbb{N} \cup \{-\infty\}$.

- either use rewrite -Fin (* where Fin : N ->\bar N *)
- or ... use directly $\mathbb N$ lemmas on $\mathbb N\cup\{-\infty\}$

Revisiting parametricity and univalent parametricity

Parametricity: standard version [2]

• Context translation:

$$[\langle \rangle] = \langle \rangle \tag{1}$$

$$\llbracket \Gamma, x : A \rrbracket = \llbracket \Gamma \rrbracket, x : A, x' : A', x_R : \llbracket A \rrbracket \times x'$$
(2)

• Term translation:

$$\llbracket \Box_i \rrbracket = \lambda A A' . A \to A' \to \Box_i$$
⁽³⁾

$$\llbracket x \rrbracket = x_R \tag{4}$$

$$\llbracket A B \rrbracket = \llbracket A \rrbracket B B' \llbracket B \rrbracket$$
(5)

$$\begin{bmatrix} \lambda x : A. t \end{bmatrix} = \lambda (x : A)(x' : A')(x_R : \llbracket A \rrbracket x x') . \llbracket t \rrbracket$$

$$\begin{bmatrix} \Pi x : A. B \end{bmatrix} = \lambda f f' . \Pi (x : A)(x' : A')(x_R : \llbracket A \rrbracket x x') .$$

$$\begin{bmatrix} B \rrbracket (f x)(f' x')$$
(7)

Parametricity: standard version [2]

• Context translation:

$$[\langle \rangle] = \langle \rangle \tag{1}$$

$$\llbracket \Gamma, x : A \rrbracket = \llbracket \Gamma \rrbracket, x : A, x' : A', x_R : \llbracket A \rrbracket \times x'$$
(2)

Term translation:

naío-

$$\llbracket \Box_i \rrbracket = \lambda A A' . A \to A' \to \Box_i \tag{3}$$

$$\llbracket x \rrbracket = x_R \tag{4}$$

$$\llbracket A B \rrbracket = \llbracket A \rrbracket B B' \llbracket B \rrbracket$$
⁽⁵⁾

$$\llbracket \lambda x : A. t \rrbracket = \lambda (x : A)(x' : A')(x_R : \llbracket A \rrbracket \times x'). \llbracket t \rrbracket$$
(6)

$$\llbracket \Pi x : A. B \rrbracket = \lambda f f'. \Pi (x : A)(x' : A')(x_R : \llbracket A \rrbracket x x').$$

$$\llbracket B \rrbracket (f x)(f' x')$$
(7)

• Abstraction theorem: If $\Gamma \vdash t : T$ then $\llbracket \Gamma \rrbracket \vdash t : T$, $\llbracket \Gamma \rrbracket \vdash t' : T'$ and $\llbracket \Gamma \rrbracket \vdash \llbracket t \rrbracket : \llbracket T \rrbracket t t'$.

Parametricity: sequent style

Parametricity contexts:

$$\Xi ::= \varepsilon \mid \Xi, \ x \sim x' \ \because \ x_R.$$

Parametricity rules:

Inría

$$\frac{(x, x', x_R) \in \Xi \quad \Xi \vdash}{\Xi \vdash u_i \sim u_i \vee \lambda(AB : u_i). A \to B \to u_i} (PARAMSORT) \qquad \qquad \frac{(x, x', x_R) \in \Xi \quad \Xi \vdash}{\Xi \vdash x \sim x' \vee x_R} (PARAMVAR)$$

$$\frac{\Xi \vdash M \sim M' \vee M_R \quad \Xi \vdash N \sim N' \vee N_R}{\Xi \vdash M \times N' N_R} (PARAMAPP) \qquad \qquad \frac{\Xi, x \sim x' \vee x_R \vdash M \sim M' \vee M_R}{\Xi \vdash \lambda x : A.M \sim \lambda x' : A'.M' \vee \lambda x x' x_R.M_R} (PARAMLAM)$$

$$\frac{\Xi \vdash A \sim A' \vee A_R \quad \Xi, x \sim x' \vee x_R \vdash B \sim B' \vee B_R \quad x, x' \notin Var(\Xi)}{\Xi \vdash \Pi x : A.B \sim \Pi x' : A'.B' \vee \lambda f g. \Pi x x' x_R.B_R (f x) (g x')} (PARAMPI)$$
Parametricity: sequent abstraction theorem

We say \varXi is admissible for \varGamma if

$$\Gamma \rhd \Xi \triangleq \frac{\Xi \vdash \Gamma(x) \sim A' \because A_R}{\Gamma(x') = A' \land \Gamma(x_R) = A_R \times x'}$$

We rephrase the abstraction theorem:

naín

$$\frac{\Gamma \vdash \Gamma \vdash M : A \quad \Gamma \rhd \Xi}{\Gamma \vdash M' : A'} \quad \frac{\Xi \vdash M \sim M' \because M_R}{\Gamma \vdash M_R : A_R \mid M \mid M'} \quad \frac{\Xi \vdash A \sim A' \because A_R}{\Gamma \vdash M_R : A_R \mid M \mid M'}$$

In particular, by applying it to $\Gamma \vdash A : \Box_i$ instead, we get:

$$\frac{\Gamma \rhd \varXi \qquad \varXi \vdash A \sim A' \quad \because \quad A_R}{\Gamma \vdash A_R : A \to A' \to \Box_i}$$

Example: motivating raw paramericity

Assume we have a derivation

 $\begin{array}{c} \vdots \\ \text{fold } \mathbb{N} \ 0_{\mathbb{N}} \ (+_{\mathbb{N}})[1_{\mathbb{N}}, 2_{\mathbb{N}}, 3_{\mathbb{N}}] \ \sim \ \text{fold } N \ 0_{N} \ (+_{N})[1_{N}, 2_{N}, 3_{N}] \ \ddots \ w \end{array}$

Example: motivating raw paramericity

Assume $\phi : \mathbb{N} \to \mathbb{N}$ and

$$\mathbb{N} \sim \mathbf{N} :: \lambda(m:\mathbb{N})(n:\mathbf{N}).\phi(m) = n$$

$$\mathbf{0}_{\mathbb{N}} \sim \mathbf{0}_{\mathbf{N}} :: (\mathbf{0}_{\mathcal{R}}:\phi(\mathbf{0}_{\mathbb{N}}) = \mathbf{0}_{\mathbf{N}})$$

$$S_{\mathbb{N}} \sim S_{\mathbf{N}} :: (S_{\mathcal{R}}:\forall m \forall n, \phi(m) = n \to \phi(S_{\mathbb{N}}m) = S_{\mathbf{N}}n)$$

Assume we have a derivation

$$\begin{array}{c} \vdots \\ \hline \mathsf{fold} \ \mathbb{N} \ \mathbf{0}_{\mathbb{N}} \ (+_{\mathbb{N}})[\mathbf{1}_{\mathbb{N}},\mathbf{2}_{\mathbb{N}},\mathbf{3}_{\mathbb{N}}] \ \sim \ \mathsf{fold} \ \mathbb{N} \ \mathbf{0}_{N} \ (+_{N})[\mathbf{1}_{N},\mathbf{2}_{N},\mathbf{3}_{N}] \ \because \ w \end{array}$$

Example: motivating raw paramericity

Assume $\phi : \mathbb{N} \to \mathbb{N}$ and

$$\mathbb{N} \sim \mathbf{N} :: \lambda(m:\mathbb{N})(n:\mathbf{N}).\phi(m) = n$$

$$\mathbf{0}_{\mathbb{N}} \sim \mathbf{0}_{\mathbf{N}} :: (\mathbf{0}_{\mathcal{R}}:\phi(\mathbf{0}_{\mathbb{N}}) = \mathbf{0}_{\mathbf{N}})$$

$$S_{\mathbb{N}} \sim S_{\mathbf{N}} :: (S_{\mathcal{R}}:\forall m \forall n, \phi(m) = n \to \phi(S_{\mathbb{N}}m) = S_{\mathbf{N}}n)$$

Assume we have a derivation

$$\frac{\vdots}{ \mathsf{fold} \ \mathbb{N} \ \mathbf{0}_{\mathbb{N}} \ (+_{\mathbb{N}})[\mathbf{1}_{\mathbb{N}},\mathbf{2}_{\mathbb{N}},\mathbf{3}_{\mathbb{N}}] \ \sim \ \mathsf{fold} \ N \ \mathbf{0}_{\mathbb{N}} \ (+_{\mathbb{N}})[\mathbf{1}_{\mathbb{N}},\mathbf{2}_{\mathbb{N}},\mathbf{3}_{\mathbb{N}}] \ \cdots \ w} }$$

Then w has type

$$\phi (\mathsf{fold} \ \mathbb{N} \ \mathbf{0}_{\mathbb{N}} \ (+_{\mathbb{N}})[\mathbf{1}_{\mathbb{N}}, \mathbf{2}_{\mathbb{N}}, \mathbf{3}_{\mathbb{N}}]) = \mathsf{fold} \ \mathbb{N} \ \mathbf{0}_{\mathbb{N}} \ (+_{\mathbb{N}})[\mathbf{1}_{\mathbb{N}}, \mathbf{2}_{\mathbb{N}}, \mathbf{3}_{\mathbb{N}}]$$

Example: motivating univalent paramericity

Assume $P : \Box_i \to \Box_j$ is a closed term.

The witness w has type

 $P\mathbb{N} \sim P\mathbb{N} \quad \because \quad w$ $\llbracket \Box_j \rrbracket (P\mathbb{N}) (P\mathbb{N})$

i.e.

 $(P\mathbb{N}) \to (P\mathbb{N}) \to \Box_j$

Example: motivating univalent paramericity

Assume $P : \Box_i \to \Box_j$ is a closed term.

The witness w has type

 $P\mathbb{N} \sim P\mathbb{N} \quad \because \quad w$ $\llbracket \Box_j \rrbracket (P\mathbb{N}) (P\mathbb{N})$ $(P\mathbb{N}) \rightarrow (P\mathbb{N}) \rightarrow \Box_j$

 $(P\mathbb{N}) \leftrightarrow (P\mathbb{N})$

i.e.

We want

Ínría_

• Term translation:

$$[\Box_i] = p_{\Box_i}$$

$$[x] = x_R$$

$$[A B] = [A] B B' [B]$$

$$[\lambda x : A. t] = \Pi(x : A)(x' : A')(x_R : \llbracket A \rrbracket x x'). [t]$$

$$[\Pi x : A. B] = p_{\Pi} [A] [B]$$

• Type translation: $\llbracket A \rrbracket = \llbracket A \rrbracket .1$ $\llbracket A \rrbracket^{eq} = \llbracket A \rrbracket .2$ $\llbracket A \rrbracket^{coh} = \llbracket A \rrbracket .3$

• Term translation:

$$\begin{bmatrix} \Box_{i} \end{bmatrix} = \begin{pmatrix} \lambda A B. \Sigma(R : \operatorname{rel}_{i} A B)(e : A \simeq B).\Pi ab.(R \ a \ b) \simeq (a = e^{-1}b) \\ \operatorname{id}_{\Box_{i}} \\ \operatorname{univ}_{\Box_{i}} \end{pmatrix}$$

$$\begin{bmatrix} x \end{bmatrix} = x_{R} \\ \begin{bmatrix} A B \end{bmatrix} = \begin{bmatrix} A \end{bmatrix} B B' \begin{bmatrix} B \end{bmatrix} \\ \begin{bmatrix} \lambda x : A. t \end{bmatrix} = \Pi(x : A)(x' : A')(x_{R} : \llbracket A \rrbracket \times x').\llbracket t \end{bmatrix} \\ \begin{bmatrix} \Pi x : A. B \end{bmatrix} = \begin{pmatrix} \lambda f f'. \Pi(x : A)(x' : A')(x_{R} : \llbracket A \rrbracket \times x').\llbracket B \rrbracket(f \ x)(f' \ x') \\ \\ \operatorname{Equiv}_{\Pi} \llbracket A \rrbracket^{eq} \llbracket B \rrbracket^{eq} \\ \operatorname{univ}_{\Pi} \end{pmatrix}$$

• Type translation: $\llbracket A \rrbracket = \llbracket A \rrbracket .1$ $\llbracket A \rrbracket^{eq} = \llbracket A \rrbracket .2$ $\llbracket A \rrbracket^{coh} = \llbracket A \rrbracket .3$

• Term translation:

Innía_

$$\begin{bmatrix} \Box_{i} \end{bmatrix} = \begin{pmatrix} \lambda A B. \Sigma(R : \operatorname{rel}_{i} A B)(e : A \simeq B).\Pi ab.(R \ a \ b) \simeq (a = e^{-1}b) \\ \operatorname{id}_{\Box_{i}} \\ \operatorname{univ}_{\Box_{i}} \end{pmatrix}$$
$$\begin{bmatrix} x \end{bmatrix} = x_{R} \\ \begin{bmatrix} A B \end{bmatrix} = \begin{bmatrix} A \end{bmatrix} B B' \begin{bmatrix} B \end{bmatrix} \\ \begin{bmatrix} \lambda x : A. t \end{bmatrix} = \Pi(x : A)(x' : A')(x_{R} : \llbracket A \rrbracket x x').\llbracket t \end{bmatrix} \\ \begin{bmatrix} \Pi x : A. B \end{bmatrix} = \begin{pmatrix} \lambda f f'. \Pi(x : A)(x' : A')(x_{R} : \llbracket A \rrbracket x x').\llbracket B \rrbracket(f \ x)(f' \ x') \\ \operatorname{Equiv}_{\Pi} \llbracket A \rrbracket^{\operatorname{eq}} \llbracket B \rrbracket^{\operatorname{eq}} \\ \operatorname{univ}_{\Pi} \end{pmatrix} \end{pmatrix}$$

- Type translation: $\llbracket A \rrbracket = \llbracket A \rrbracket .1$ $\llbracket A \rrbracket^{eq} = \llbracket A \rrbracket .2$ $\llbracket A \rrbracket^{coh} = \llbracket A \rrbracket .3$
- Abstraction theorem: If $\Gamma \vdash t : T$ then $\llbracket \Gamma \rrbracket \vdash [t] : \llbracket T \rrbracket t t'$.

• Term translation:

naío_

$$\begin{bmatrix} \Box_{i} \end{bmatrix} = \begin{pmatrix} \lambda A B. \Sigma(R : \operatorname{rel}_{i} A B)(e : A \simeq B).\Pi ab.(R \ a \ b) \simeq (a = e^{-1}b) \\ \operatorname{id}_{\Box_{i}} \\ \operatorname{univ}_{\Box_{i}} \end{pmatrix}$$
$$\begin{bmatrix} x \end{bmatrix} = x_{R} \\ \begin{bmatrix} A B \end{bmatrix} = \begin{bmatrix} A \end{bmatrix} B B' \begin{bmatrix} B \end{bmatrix} \\ \begin{bmatrix} \lambda x : A. t \end{bmatrix} = \Pi(x : A)(x' : A')(x_{R} : \llbracket A \rrbracket x x').\llbracket t \end{bmatrix} \\ \begin{bmatrix} \Pi x : A. B \end{bmatrix} = \begin{pmatrix} \lambda f \ f'. \Pi(x : A)(x' : A')(x_{R} : \llbracket A \rrbracket x x').\llbracket B \rrbracket(f \ x)(f' \ x') \\ \operatorname{Equiv}_{\Pi} \llbracket A \rrbracket^{\operatorname{eq}} \llbracket B \rrbracket^{\operatorname{eq}} \\ \operatorname{univ}_{\Pi} \end{pmatrix} \end{pmatrix}$$

- Type translation: $\llbracket A \rrbracket = [A].1$ $\llbracket A \rrbracket^{eq} = [A].2$ $\llbracket A \rrbracket^{coh} = [A].3$
- Abstraction theorem: If $\Gamma \vdash t : T$ then $\llbracket \Gamma \rrbracket \vdash [t] : \llbracket T \rrbracket t t'$.
- Remark A: If $\Gamma \vdash A : \Box_i$ then $\llbracket \Gamma \rrbracket \vdash [A] : \llbracket \Box_i \rrbracket A A'$.

• Term translation:

nain

$$\begin{bmatrix} \Box_{i} \end{bmatrix} = \begin{pmatrix} \lambda A B. \Sigma(R : \operatorname{rel}_{i} A B)(e : A \simeq B).\Pi ab.(R \ a \ b) \simeq (a = e^{-1}b) \\ & \operatorname{id}_{\Box_{i}} \\ & \operatorname{univ}_{\Box_{i}} \end{pmatrix}$$
$$\begin{bmatrix} x \end{bmatrix} = x_{R} \\ \begin{bmatrix} A B \end{bmatrix} = \begin{bmatrix} A \end{bmatrix} B B' \begin{bmatrix} B \end{bmatrix} \\ \begin{bmatrix} \lambda x : A. t \end{bmatrix} = \Pi(x : A)(x' : A')(x_{R} : \llbracket A \rrbracket \times x').\llbracket t \end{bmatrix}$$
$$\begin{bmatrix} \Pi x : A. B \end{bmatrix} = \begin{pmatrix} \lambda f \ f'. \Pi(x : A)(x' : A')(x_{R} : \llbracket A \rrbracket \times x').\llbracket B \rrbracket(f \ x)(f' \ x') \\ & \operatorname{Equiv}_{\Pi} \llbracket A \rrbracket^{\operatorname{eq}} \llbracket B \rrbracket^{\operatorname{eq}} \\ & \operatorname{univ}_{\Pi} \end{pmatrix}$$

- Type translation: $\llbracket A \rrbracket = [A].1$ $\llbracket A \rrbracket^{eq} = [A].2$ $\llbracket A \rrbracket^{coh} = [A].3$
- Abstraction theorem: If $\Gamma \vdash t : T$ then $\llbracket \Gamma \rrbracket \vdash [t] : \llbracket T \rrbracket t t'$.
- Remark A: If $\Gamma \vdash A : \Box_i$ then $\llbracket \Gamma \rrbracket \vdash [A] : \llbracket \Box_i \rrbracket A A'$.
- Remark B: $\vdash [\Box_i] : \llbracket \Box_{i+1} \rrbracket \Box_i \Box_i$.

• Term translation:

naío_

$$[\Box_i] = p_{\Box_i}$$

$$[x] = x_R$$

$$[A B] = [A] B B' [B]$$

$$[\lambda x : A. t] = \Pi(x : A)(x' : A')(x_R : \llbracket A \rrbracket x x'). [t]$$

$$[\Pi x : A. B] = p_{\Pi} [A] [B]$$

- Type translation: $\llbracket A \rrbracket = \llbracket A \rrbracket .1$ $\llbracket A \rrbracket^{eq} = \llbracket A \rrbracket .2$ $\llbracket A \rrbracket^{coh} = \llbracket A \rrbracket .3$
- Abstraction theorem: If $\Gamma \vdash t : T$ then $\llbracket \Gamma \rrbracket \vdash [t] : \llbracket T \rrbracket t t'$.
- Remark A: If $\Gamma \vdash A : \Box_i$ then $\llbracket \Gamma \rrbracket \vdash [A] : \llbracket \Box_i \rrbracket A A'$.
- Remark B: $\vdash [\Box_i] : \llbracket \Box_{i+1} \rrbracket \Box_i \Box_i$.

Univalent parametricity: sequent style

$$\frac{(x, x', x_R) \in \Xi}{\Xi \vdash_u \square_i \sim \square_i} (\text{UPARAMSORT}) \qquad \frac{(x, x', x_R) \in \Xi}{\Xi \vdash_u x \sim x' \because x_R} (\text{UPARAMVAR})$$

$$\frac{\Xi \vdash_u M \sim M' \because M_R}{\Xi \vdash_u M \sim M' N' \because M_R N N' N_R} (\text{UPARAMAPP})$$

$$\frac{\Xi \vdash_u A \sim A' \because A_R}{\Xi \vdash_u \lambda x : A. M \sim \lambda x' : A'. M' \because \lambda x x' x_R. M_R} (\text{UPARAMLAM})$$

$$\frac{\Xi \vdash_u A \sim A' \because A_R}{\Xi \vdash_u \lambda x : A. B \sim \Pi x' : A'. B' \because P_\Pi A_R B_R} (\text{UPARAMPI})$$

Cohen, Crance, Mahboubi – Trocq – October 17^{nth}, 2024

Inría

Univalent parametricity: sequent abstraction

We rephrase the Univalent parametricity abstraction theorem:

$$\frac{\Gamma \vdash \quad \Gamma \vdash M : A \quad \Gamma \rhd \Xi \quad \Xi \vdash_{u} M \sim M' \because M_{R} \quad \Xi \vdash_{u} A \sim A' \because A_{R}}{\Gamma \vdash M' : A' \quad \text{and} \quad \Xi \vdash_{u} M_{R} : (A_{R} M M') .1}$$

Remark A:

$$\frac{\Gamma \vdash A: \Box_i \quad \varXi \vdash_u A \sim A' \quad \because \quad A_R \qquad \Gamma \rhd \varXi}{\Gamma \vdash_u A_R: (p_{\Box_i} \land A').1}$$

Remark B:

$$\vdash_u p_{\Box_i} : \left(p_{\Box_{i+1}} \Box_i \Box_i \right) . 1$$

Type equivalence in a kit

Observation

The key datastructure in univalent parametricity is the one of **relations which are the graph of equivalences**

$$\square^{u} A B \triangleq \left(\Sigma(R: A \to B \to \Box)(e: A \simeq B).\Pi ab.(R a b) \simeq (a = e^{-1}b) \right).$$

Inría

Observation

The key datastructure in univalent parametricity is the one of **relations which are the graph of equivalences**

$$\square^{u} A B \triangleq \left(\Sigma(R: A \to B \to \square)(e: A \simeq B).\Pi ab.(R a b) \simeq (a = e^{-1}b) \right).$$

The two following observations

- "inhabiting this structure triggers uses of univalence",
- "it is not symmetric (one direction is privileged in e)",

Observation

The key datastructure in univalent parametricity is the one of **relations which are the graph of equivalences**

$$\blacksquare^{u} A B \triangleq \left(\Sigma(R: A \to B \to \Box)(e: A \simeq B).\Pi ab.(R a b) \simeq (a = e^{-1}b) \right).$$

The two following observations

- "inhabiting this structure triggers uses of univalence",
- "it is not symmetric (one direction is privileged in e)", correspond exactly to the two achievements:
 - · change representation without univalence in some cases,
 - change representation with partial isos in some cases.

Disassembling type equivalence

• We use a variation of (exercise in the HoTT Book):

$$\begin{array}{ll} (A \simeq B) \simeq \ \Sigma R : A \to B \to \Box . \ \mathrm{lsFun}(R) \times \mathrm{lsFun}(R^{-1}) \\ \mathrm{with} & \mathrm{lsFun}(R) \triangleq \Pi a : A . \ \mathrm{lsContr}(\Sigma b : B . R \ a \ b) \\ & R^{-1} \triangleq \lambda a \ b . R \ b \ a \end{array}$$

Disassembling type equivalence

• We use a variation of (exercise in the HoTT Book):

$$\begin{array}{ll} (A \simeq B) \simeq \ \Sigma R : A \to B \to \Box . \ \mathrm{lsFun}(R) \times \mathrm{lsFun}(R^{-1}) \\ \mathrm{with} & \mathrm{lsFun}(R) \triangleq \varPi a : A . \ \mathrm{lsContr}(\varSigma b : B . R \ a \ b) \\ & R^{-1} \triangleq \lambda a \ b . R \ b \ a \end{array}$$

• Then we remark $IsFun(R) \simeq IsUmap(R)$, where

$$sUmap(R) \triangleq \Sigma(m: A \to B).$$

$$\Sigma(g_1: \Pi(a: A)(b: B). m a = b \to R a b).$$

$$\Sigma(g_2: \Pi(a: A)(b: B). R a b \to m a = b).$$

$$\Pi(a: A)(b: B). (g_1 a b) \circ (g_2 a b) \doteqdot id.$$

naín

Disassembling type equivalence

• We use a variation of (exercise in the HoTT Book):

$$\begin{array}{ll} (A \simeq B) \simeq \ \varSigma R : A \to B \to \Box. \ {\rm lsFun}(R) \times {\rm lsFun}(R^{-1}) \\ {\rm with} \quad {\rm lsFun}(R) \triangleq \varPi a : A. \ {\rm lsContr}(\varSigma b : B. R \ a \ b) \\ R^{-1} \triangleq \lambda a \ b. R \ b \ a \end{array}$$

• Then we remark $IsFun(R) \simeq IsUmap(R)$, where

$$sUmap(R) \triangleq \Sigma(m: A \to B).$$

$$\Sigma(g_1: \Pi(a: A)(b: B). m a = b \to R a b).$$

$$\Sigma(g_2: \Pi(a: A)(b: B). R a b \to m a = b).$$

$$\Pi(a: A)(b: B). (g_1 a b) \circ (g_2 a b) \doteqdot id.$$

• We pose

nnín_

$$\Box^{\top} A B \triangleq \Sigma R : A \to B \to \Box. \text{ IsUmap}(R) \times \text{ IsUmap}(R^{-1})$$

Reassembling type equivalence

For
$$\alpha = (n, k) \in \mathcal{A} \triangleq \{0, 1, 2_a, 2_b, 3, 4\}^2$$
, we pose:

$$\square^{\alpha} \triangleq \lambda(A B : \square) . \Sigma(R : A \to B \to \square) . Class_{\alpha} R$$

$$Class_{\alpha} R \triangleq (M_n R) \times (M_k R^{-1})$$

$$M_0 R \triangleq .$$

$$M_1 R \triangleq (A \to B)$$

$$M_{2_a} R \triangleq \Sigma m : A \to B. G_{2_a} m R$$

$$G_{2_a} m R \triangleq \Pi a b. m a = b \to R a b$$

$$M_{2_b} R \triangleq \Sigma m : A \to B. G_{2_b} m R$$

$$G_{2_b} m R \triangleq \Pi a b. R a b \to m a = b$$

$$M_3 R \triangleq \Sigma m : A \to B. (G_{2_a} m R) \times (G_{2_b} m R).$$

$$M_4 R \triangleq \Sigma m : A \to B. \Sigma(g_1 : G_{2_a} m R). \Sigma(g_2 : G_{2_b} m R).$$

$$\Pi a b. (g_1 a b) \circ (g_1 a b) \doteqdot id$$

(nría_

The lattice of annotations $\ensuremath{\mathcal{A}}$

Ínría_

- Noting $\bot = (0,0)$, \Box^{\bot} is equivalent to the data of a relation.
- Noting $\top=(4,4),$ the definitions of \boxdot^{\top} and $\boxdot^{(4,4)}$ coincide.
- $\square^{(4,0)}$ *A B* is the same as a function $A \rightarrow B$
- $\square^{(0,4)}$ A B is the same as a function $B \to A$
- $\square^{(4,2_a)} A B$ is the same as a split epi $A \twoheadrightarrow B$
- $\square^{(4,2_b)} A B$ is the same as a split mono $A \rightarrowtail B$

The elements $p_{\Box}^{\alpha,\beta}$ of \Box^{β} \Box

Let

$$\mathcal{D}_{\Box} = \{ (\alpha, \beta) \in \mathcal{A}^2 \mid \alpha = \top \lor \beta \in \{\mathbf{0}, \mathbf{1}, \mathbf{2}_{\mathsf{a}}\}^2 \}$$

For all $(\alpha,\beta)\in\mathcal{D}_\square$ we can define $\pmb{p}_\square^{\alpha,\beta}$ such that

$$\vdash_{u} p_{\Box}^{\alpha,\beta} : \square^{\beta} \square \square \text{ and } \operatorname{rel}(p_{\Box}^{\alpha,\beta}) \equiv \square^{\alpha}$$

The elements $p_{\Box}^{\alpha,\beta}$ of \square^{β} \square

Let

$$\mathcal{D}_{\Box} = \{(\alpha, \beta) \in \mathcal{A}^2 \mid \alpha = \top \lor \beta \in \{\mathbf{0}, \mathbf{1}, \mathbf{2}_{\mathsf{a}}\}^2\}$$

For all $(\alpha,\beta)\in\mathcal{D}_\square$ we can define $\pmb{p}_\square^{\alpha,\beta}$ such that

$$\vdash_{u} p_{\Box}^{\alpha,\beta}$$
 : $\square^{\beta}\square$ \square and $\operatorname{rel}(p_{\Box}^{\alpha,\beta}) \equiv \square^{c}$

$\square^{\beta} \square \square$ may have several inhabitants

A translation must explain which one to target. We need to annotate \Box everywhere!

Trocq

Annotating

Г

Ínría_

Subtyping

Ínría_

$$\frac{\Gamma \vdash_{+} A : K \qquad \Gamma \vdash_{+} B : K \qquad A \equiv B}{\Gamma \vdash_{+} A \preccurlyeq B} (SUBCONV) \qquad \qquad \frac{\alpha \geq \beta \qquad i \leq j}{\Gamma \vdash_{+} \Box_{i}^{\alpha} \preccurlyeq \Box_{j}^{\beta}} (SUBSORT)$$

$$\frac{\Gamma \vdash_{+} M' N : K \qquad \Gamma \vdash_{+} M \preccurlyeq M'}{\Gamma \vdash_{+} M N \preccurlyeq M' N} (SUBAPP) \qquad \qquad \frac{\Gamma, x : A \vdash_{+} M \preccurlyeq M'}{\Gamma \vdash_{+} \lambda x : A . M \preccurlyeq \lambda x : A . M'} (SUBLAM)$$

$$\frac{\Gamma \vdash_{+} \Pi x : A . B : \Box_{i} \qquad \Gamma \vdash_{+} A' \preccurlyeq A \qquad \Gamma, x : A' \vdash_{+} B \preccurlyeq B'}{\Gamma \vdash_{+} \Pi x : A . B \preccurlyeq \Pi x : A' . B'} (SUBP1) \qquad \qquad K ::= \Box_{i} \mid \Pi x : A . K$$

Cohen, Crance, Mahboubi – Trocq – October 17^{nth}, 2024

Calculus for Trocq

Ínría_

$$\frac{(\alpha, \beta) \in \mathcal{D}_{\square}}{\Delta \vdash_{t} \square_{i}^{\alpha} @ \square_{i+1}^{\beta} \sim \square_{i}^{\alpha} \because p_{\square_{i}}^{\alpha, \beta}} (\operatorname{TrocqSort}) \qquad \qquad \frac{(x, A, x', x_{R}) \in \Delta \dots}{\Delta \vdash_{t} x @ A \sim x' \because x_{R}} (\operatorname{TrocqVar}) \\ \frac{\Delta \vdash_{t} M @ \Pi x : A. B \sim M' \because M_{R} \quad \Delta \vdash_{t} N @ A \sim N' \because N_{R}}{\Delta \vdash_{t} M N @ B[x := N] \sim M' N' \because M_{R} N N' N_{R}} (\operatorname{TrocqApp}) \\ \frac{\Delta \vdash_{t} A @ \square_{i}^{\alpha} \sim A' \because A_{R} \quad \Delta, x @ A \sim x' \because x_{R} \vdash_{t} M @ B \sim M' \because M_{R}}{\Delta \vdash_{t} \lambda x : A. M @ \Pi x : A. B \sim \lambda x' : A'. M' \because \lambda x x' x_{R}. M_{R}} (\operatorname{TrocqApp}) \\ \frac{\Delta \vdash_{t} A @ \square_{i}^{\alpha} \sim A' \because A_{R} \quad \Delta \vdash_{t} B @ \square_{i}^{\beta} \sim B' \because B_{R} \quad (\alpha, \beta) = \mathcal{D}_{\rightarrow}(\delta)}{\Delta \vdash_{t} A \rightarrow B @ \square_{i}^{\delta} \sim A' \rightarrow B' \because p_{\rightarrow}^{\delta} A_{R} B_{R}} (\operatorname{TrocqArrow}) \\ \frac{\Delta \vdash_{t} A @ \square_{i}^{\alpha} \sim A' \because A_{R} \quad \Delta, x @ A \sim x' \because x_{R} \vdash_{t} B @ \square_{i}^{\beta} \sim B' \because B_{R} \quad (\alpha, \beta) = \mathcal{D}_{II}(\delta)}{\Delta \vdash_{t} \Pi x : A. B @ \square_{i}^{\delta} \sim \Pi x' : A'. B' \because p_{\Pi}^{\delta} A_{R} B_{R}} (\operatorname{TrocqConv}) \\ \frac{\Delta \vdash_{t} M @ A \sim M' \because M_{R} \quad \gamma(\Delta) \vdash_{t} A \preccurlyeq B}{\Delta \vdash_{t} M @ B \sim M' \because M_{R} M_{R}} (\operatorname{TrocqConv})$$

Abstraction Theorem for Trocq

We have:

$$\frac{\gamma(\varDelta) \vdash_{+} \qquad \gamma(\varDelta) \vdash_{+} M : A \qquad \varDelta \vdash_{t} M @ A \sim M' \because M_{R} \qquad \varDelta \vdash_{t} A @ \Box_{i}^{\alpha} \sim A' \because A_{R}}{\gamma(\varDelta) \vdash_{+} M' : A' \qquad \text{and} \qquad \gamma(\varDelta) \vdash_{+} M_{R} : \operatorname{rel}(A_{R}) M M'$$

Remark A:

$$\frac{\gamma(\Delta) \vdash_{+} A : \Box^{\alpha} \quad \Delta \vdash_{t} A @ \Box^{\alpha} \sim A' :: A_{R}}{\gamma(\Delta) \vdash_{+} A_{R} : \Box^{\alpha} A A'}$$

Remark B:

$$\vdash_+ p_{\Box}^{\alpha,\beta}: \square^{\beta} \square^{\alpha} \square^{\alpha}$$

Ínría_

Extra material

Cohen, Crance, Mahboubi – Trocq – October 17^{nth}, 2024

The elements p_{Π}^{δ} of \square^{δ} ($\Pi A.B$) ($\Pi A'.B'$)

We need to identify the triples $(\alpha, \beta, \delta) \in \mathcal{A}^3$ for which it is possible to construct a term p_{Π}^{δ} such that:

$$\frac{\delta \vdash A_{R} : \Box^{\alpha} \land A \land' \qquad \delta, \ x : A, \ x' : A', \ x_{R} : A_{R} \times x' \vdash B_{R} : \Box^{\beta} \land B \land'}{\delta \vdash p_{\Pi}^{\delta} \land A_{R} \land B_{R} : \Box^{\delta} (\Pi x : A . B) (\Pi x' : A' . B')} \quad \text{and}$$

$$\operatorname{rel}(p_{\Pi}^{\delta} A_R B_R) \equiv \lambda f \cdot \lambda f' \cdot \Pi(x : A)(x' : A')(x_R : \operatorname{rel}(A_R) x x').$$
$$\operatorname{rel}(B_R) (f x) (f x')$$

The elements p_{Π}^{δ} of \square^{δ} ($\Pi A.B$) ($\Pi A'.B'$)

We need to identify the triples $(\alpha, \beta, \delta) \in \mathcal{A}^3$ for which it is possible to construct a term p_{Π}^{δ} such that:

$$\frac{\delta \vdash A_R : \Box^{\alpha} \land A \land \delta, x : A, x' : A', x_R : A_R x x' \vdash B_R : \Box^{\beta} \land B \land B'}{\delta \vdash p_{\Pi}^{\delta} \land A_R \land B_R : \Box^{\delta} (\Pi x : A \land B) (\Pi x' : A' \land B')}$$
and

$$\operatorname{rel}(p_{\Pi}^{\delta} A_R B_R) \equiv \lambda f \cdot \lambda f' \cdot \Pi(x : A)(x' : A')(x_R : \operatorname{rel}(A_R) \times x').$$
$$\operatorname{rel}(B_R) (f \times) (f \times')$$

We prove that p_{Π}^{δ} exists for all $(\alpha, \beta) \in \mathcal{D}_{\pi}(\delta)$, where ...

Definition of $\mathcal{D}_{\Pi}(\delta)$

For any $\delta \in \mathcal{A}$:

$$\mathcal{D}_{\Pi}(\delta) = \mathcal{D}_{\Pi}(\delta_1, \mathbf{0}) \vee \mathcal{D}_{\Pi}(\delta_2, \mathbf{0})^{-1}$$

Where for all $\alpha, \beta \in \mathcal{A}$

$$(\alpha, \beta)^{-1} \triangleq (\alpha^{-1}, \beta^{-1})$$
$$\alpha^{-1} \triangleq (\alpha_2, \alpha_1)$$
$$(\alpha, \beta) \lor (\alpha', \beta') \triangleq (\alpha \lor \alpha', \beta \lor \beta')$$
$$\alpha \lor \beta \triangleq (\alpha_1 \lor \beta_1, \alpha_2 \lor \beta_2)$$

Definition of $\mathcal{D}_{\Pi}(\delta)$

For any $\delta \in \mathcal{A}$:

Inría

$$\mathcal{D}_{\Pi}(\delta) = \mathcal{D}_{\Pi}(\delta_1, \mathbf{0}) \vee \mathcal{D}_{\Pi}(\delta_2, \mathbf{0})^{-1}$$

Where for all $\alpha, \beta \in \mathcal{A}$

$$(\alpha, \beta)^{-1} \triangleq (\alpha^{-1}, \beta^{-1})$$
$$\alpha^{-1} \triangleq (\alpha_2, \alpha_1)$$
$$(\alpha, \beta) \lor (\alpha', \beta') \triangleq (\alpha \lor \alpha', \beta \lor \beta')$$
$$\alpha \lor \beta \triangleq (\alpha_1 \lor \beta_1, \alpha_2 \lor \beta_2)$$

Thus, it suffices to define $\mathcal{D}_{\Pi}(m,0)$ for all $m \in \{0, 1, 2_a, 2_b, 3, 4\}$ The same holds for $\mathcal{D}_{\rightarrow}(\delta)$.
Definition of $\mathcal{D}_{\Pi}(m,0)$ **and** $\mathcal{D}_{\rightarrow}(m,0)$

m	$\mathcal{D}_{\Pi}(\textbf{\textit{m}},\textbf{0})_1$	$\mathcal{D}_{\Pi}(\pmb{m},\pmb{0})_2$
0	(0,0)	(0,0)
1	$(0, 2_a)$	(1,0)
2 _a	(0, 4)	$(2_{a}, 0)$
2 _b	$(0, 2_a)$	$(2_{b}, 0)$
3	(0, 4)	(3,0)
4	(0, 4)	(4,0)

т	$\mathcal{D}_{ ightarrow}(m,0)_1$	$\mathcal{D}_{ ightarrow}({\it m},{\it 0})_2$
0	(0,0)	(0,0)
1	(0, 1)	(1,0)
2 _a	$(0, 2_b)$	$(2_{a}, 0)$
2 _b	$(0, 2_{a})$	$(2_{b}, 0)$
3	(0,3)	(3,0)
4	(0,4)	(4,0)

Ínría

Conclusion

Cohen, Crance, Mahboubi – Trocq – October 17^{nth}, 2024

Comparison

	Wat	Set Set		EAL 113	ister 10	nin c	ital AC	N2 [1]	94 (3) 94 (3)
Heterogeneous relations	 Image: A start of the start of	X	 Image: A start of the start of	 Image: A start of the start of	✓	✓	 ✓ 	1	1
Internal	×	 Image: A start of the start of	 Image: A start of the start of	 Image: A start of the start of	 Image: A start of the start of	 Image: A start of the start of	\checkmark	\checkmark	1
No anticipation	1	 Image: A start of the start of	 Image: A start of the start of	 Image: A start of the start of	✓	 Image: A start of the start of	×	\checkmark	1
Substitution under \forall	1	 Image: A start of the start of	×	✓	✓	 Image: A start of the start of	\checkmark	\checkmark	1
Substitution in dep. types	 Image: A start of the start of	×	×	×	×	✓	1	×	1
No univalence for ?	 Image: A start of the start of	 Image: A start of the start of	 Image: A start of the start of	 Image: A start of the start of	 Image: A start of the start of	×	×	\checkmark	1
Preorder relations	×	 Image: A start of the start of	?	?	?	×	?	?	67
Subrelations	×	 Image: A start of the start of	×	X	×	×	X	X	67
QERs	×	67	-	-	-	X	1	X	-
Subtyping relations	X	X	-	-	-	X	X	-	-
System	്റ	َ ک	്റ്	153	ى ك	_ ک	<u>`</u> ~	کی ر	ેટ્ટ

Bring home

- Change representation without univalence in some cases.
- Change representation with partial isos in some cases.

In our current version,

- univalence is required if and only if there is some \Box^{α} such that $\alpha \ge (2_b, 0)$ or $\alpha \ge (0, 2_b)$ occurs in the derivation.
- reducing a goal G to an hypothesis H corresponds to finding an element □^(0,1) G H (i.e. an arrow H → G). If the body of G and H have the right variance, we might keep the invariant that nothing more than the partial isos □^(4,2_a), □^(4,2_b), □^(2_a,4) or □^(2_b,4) are required on given types.

In the future (with a bit more work), we may unify

- CoqEAL
- Univalent paramericity
- Generalized (Setoid) rewriting

Bibliography

Cohen, Crance, Mahboubi – Trocq – October 17^{nth}, 2024

bibliography I

- Carlo Angiuli et al. "Internalizing representation independence with univalence". In: Proc. ACM Program. Lang. 5.POPL (2021), pp. 1–30. DOI: 10.1145/3434293. URL: https://doi.org/10.1145/3434293.
- Jean-Philippe Bernardy and Marc Lasson. "Realizability and Parametricity in Pure Type Systems".
 In: Foundations of Software Science and Computational Structures 14th International Conference, FOSSACS 2011, Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2011, Saarbrücken, Germany, March 26-April 3, 2011. Proceedings. Ed. by Martin Hofmann. Vol. 6604. Lecture Notes in Computer Science. Springer, 2011, pp. 108–122. DOI: 10.1007/978-3-642-19805-2_8. URL: https://doi.org/10.1007/978-3-642-19805-2_8.
- [3] Valentin Blot et al. "Compositional Pre-processing for Automated Reasoning in Dependent Type Theory". In: Proceedings of the 12th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP 2023, Boston, MA, USA, January 16-17, 2023. Ed. by Robbert Krebbers et al. ACM, 2023, pp. 63–77. DOI: 10.1145/3573105.3575676. URL: https://doi.org/10.1145/3573105.3575676.

bibliography II

- [4] Cyril Cohen, Enzo Crance, and Assia Mahboubi. "Artifact Report: Trocq: Proof Transfer for Free, With or Without Univalence". In: ESOP 2024 - 33rd European Symposium on Programming. Vol. LNCS-14576. Programming Languages and Systems 33rd European Symposium on Programming, ESOP 2024, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2024, Luxembourg City, Luxembourg, April 6–11, 2024, Proceedings, Part I. Luxembourg, Luxembourg: Springer Nature Switzerland, Apr. 2024, pp. 269–274. DOI: 10.1007/978-3-031-57262-3_11. URL: https://inria.hal.science/hal-04623207.
- [5] Cyril Cohen, Maxime Dénès, and Anders Mörtberg. "Refinements for Free!" In: Certified Programs and Proofs - Third International Conference, CPP 2013, Melbourne, VIC, Australia, December 11-13, 2013, Proceedings. Ed. by Georges Gonthier and Michael Norrish. Vol. 8307. Lecture Notes in Computer Science. Springer, 2013, pp. 147–162. DOI: 10.1007/978-3-319-03545-1_10. URL: https://doi.org/10.1007/978-3-319-03545-1_10.
- [6] Florian Haftmann et al. "Data Refinement in Isabelle/HOL". In: Interactive Theorem Proving. Ed. by Sandrine Blazy, Christine Paulin-Mohring, and David Pichardie. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 100–115. ISBN: 978-3-642-39634-2.

bibliography III

- [7] Brian Huffman and Ondřej Kunčar. "Lifting and Transfer: A Modular Design for Quotients in Isabelle/HOL". In: Certified Programs and Proofs. Ed. by Georges Gonthier and Michael Norrish. Cham: Springer International Publishing, 2013, pp. 131–146. ISBN: 978-3-319-03545-1.
- [8] Peter Lammich. "Automatic Data Refinement". In: Interactive Theorem Proving. Ed. by Sandrine Blazy, Christine Paulin-Mohring, and David Pichardie. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 84–99. ISBN: 978-3-642-39634-2.
- [9] Peter Lammich and Andreas Lochbihler. "Automatic Refinement to Efficient Data Structures: A Comparison of Two Approaches". In: J. Autom. Reason. 63.1 (2019), pp. 53–94. DOI: 10.1007/s10817-018-9461-9. URL: https://doi.org/10.1007/s10817-018-9461-9.
- [10] Nicolas Magaud. "Changing Data Representation within the Coq System". In: TPHOLs'2003. Vol. 2758. © Springer-Verlag. LNCS, Springer-Verlag, 2003. URL: http://www.springerlink.com/openurl.asp?genre=article&issn=0302-9743&volume=2758&spage=87.

bibliography IV

- [11] The Mathematical Components Team. Mathematical Components Library. https://github.com/math-comp/math-comp. Last stable version: 2.1 (2023). 2007.
- [12] Matthieu Sozeau. "A New Look at Generalized Rewriting in Type Theory". In: J. Formaliz. Reason. 2.1 (2009), pp. 41–62. DOI: 10.6092/issn.1972-5787/1574. URL: https://doi.org/10.6092/issn.1972-5787/1574.
- [13] Nicolas Tabareau, Éric Tanter, and Matthieu Sozeau. "Equivalences for free: univalent parametricity for effective transport". In: Proceedings of the ACM on Programming Languages 2.ICFP (2018), pp. 1–29.
- [14] Nicolas Tabareau, Éric Tanter, and Matthieu Sozeau. "The marriage of univalence and parametricity". In: Journal of the ACM (JACM) 68.1 (2021), pp. 1–44.
- [15] Théo Zimmermann and Hugo Herbelin. "Automatic and Transparent Transfer of Theorems along Isomorphisms in the Coq Proof Assistant". In: Conference on Intelligent Computer Mathematics. Washington, D.C., United States, 2015. URL: https://hal.science/hal-01152588.

nnín