
Rewriting under binders, comfortably

Yves Bertot

March 2025

1 / 10



Plan

▶ difficulty proving
n∑

i=0

i =
n∑

i=0

√
i2

▶ Formal proofs have several steps,

▶ Math teacher proofs are very different,

▶ A proposed solution.

2 / 10



The context

▶ Mathematical constructions like integrals and iterated sums
have bound variables

▶ From the formal point of view, a bound variable does not
really exist

▶ Type theory promotes Leibniz equality as the main tool to
reason modulo equality
▶ especially for rewriting

▶ But Leibniz equality requires objects that really exist

3 / 10



Discrepancy in idioms

n∑
i=0

i =
n∑

i=0

√
i2

▶ The math teacher’s proof (I believe)

▶ Replace
√
i2 with i in the right-hand side sum.

▶ Note that the sum ranges over positive values

▶ The formally verified proof

1. Establish ∀i , 0 ≤ i ≤ n ⇒ i =
√
i2

2. For this, fix i such that 0 ≤ i ≤ n,
3. Then i =

√
i2 (by some proof),

4. then apply the extensionality lemma for sums:

∀fg , (∀i , 0 ≤ i ≤ n ⇒ f (i) = g(i)) ⇒
n∑

i=0

f (i) =
n∑

i=0

g(i)

4 / 10



The curse of α-conversion

▶ There is no doubt that, if i exists and is larger than 0,
i =

√
i2,

▶ Leibniz says: if n = m, you can replace n with m in any
formula
▶ But the numbers i and

√
i do not even exist in the formula

n∑
i=0

√
i2

▶ Bound variable names do not count for logical reasoning

n∑
i=0

√
i2 =

n∑
j=0

√
j2

▶
√
i2 does not occur in the right-hand side formula!

▶ So you cannot use Leibniz’ principle directly

5 / 10



A preliminary solution

▶ Make the sentence Replace
√
i2 with i in the sum.

understandable by the proof system

▶ Do not work modulo α-conversion

1. Recognize that
√
i2 is not well-formed because we are missing

a variable with the name i

2. By scanning the formula, detect that i is bound in at least one
place,

3. Search for instances of
√
i2 in the multiple places where this

may occur

4. Do this again if there are nested binding patterns

5. Every time one enters inside an operator with bound variables,
apply a suitable “extensionality” theorem

6 / 10



Example using the solution

DEMO

dépot git, fichier d’expérience

7 / 10

https://github.com/ybertot/one_num_type/
https://github.com/ybertot/one_num_type/blob/main/extensional_replace.v


A prototype implementation

▶ Required an extension of the Elpi meta-programming
language

▶ Authorize passing “open terms” as argument to tactics
▶ An open term is well typed in an extension of the context
▶ Example, if i does not exist in the context√

i2 is not well-typed,
but λi : R,

√
i2 is well typed

▶ The tactic receives two open terms, which can be viewed has
a rewrite rule

▶ the context is search for a subcontext where:
▶ All “open variables” are accounded
▶ The left-hand side of the rewrite rule occurs

8 / 10



Building a proof

▶ Default extensionality: two functions that are equal
everywhere can be substituted for each other
▶ Axiom functional extensionality provided by Rocq

▶ Ad hoc extensionality: compare functions only on a subset
▶ For integrals: the subset is the interval between the bounds
▶ For discrete sums with integer bounds: the subset is the

intersection of the integers and the interval between the
bounds

9 / 10



Future work

▶ Provide a comfortable interface to add new ad-hoc
extensionality principles

▶ Rely on setoid rewrite, advanced location selection

▶ Handle goals that are not equalities

▶ perform replacement modulo orders

▶ Find links with observational type theory

10 / 10


