Rewriting under binders, comfortably

Yves Bertot

March 2025

1/10



Plan

» difficulty proving

n n
dYi=Y Vi
i=0 i=0
» Formal proofs have several steps,
» Math teacher proofs are very different,

» A proposed solution.

2/10



The context

» Mathematical constructions like integrals and iterated sums
have bound variables

» From the formal point of view, a bound variable does not
really exist

» Type theory promotes Leibniz equality as the main tool to
reason modulo equality

» especially for rewriting

P> But Leibniz equality requires objects that really exist

3/10



Discrepancy in idioms

n n
i=S Vi

i=0 i=0

» The math teacher’s proof (I believe)

» Replace Vi2 with i in the right-hand side sum.

» Note that the sum ranges over positive values
» The formally verified proof

1. EstablishVi,0<i<n=i=+i2

2. For this, fix i such that 0 <j < n,

3. Then i = V/i2 (by some proof),

4. then apply the extensionality lemma for sums:

Vg, (Vi,0 <i<n= f(i) :>Zf

n

=2 sl

i=0

i)

4/10



The curse of a-conversion

» There is no doubt that, if i exists and is larger than 0,
i=Vi2,

> Leibniz says: if n = m, you can replace n with m in any
formula

» But the numbers i and v/i do not even exist in the formula
n
2 VP
i=0
» Bound variable names do not count for logical reasoning
n n
Y VR
i=0 j=0

» /i2 does not occur in the right-hand side formulal
» So you cannot use Leibniz' principle directly

5/10



A preliminary solution

> Make the sentence Replace V/i2 with i in the sum.
understandable by the proof system

» Do not work modulo a-conversion
1. Recognize that v/i2 is not well-formed because we are missing
a variable with the name /

2. By scanning the formula, detect that i is bound in at least one
place,

3. Search for instances of Vi2 in the multiple places where this
may occur

4. Do this again if there are nested binding patterns

5. Every time one enters inside an operator with bound variables,
apply a suitable “extensionality” theorem

6/10



Example using the solution

DEMO

dépot git, fichier d'expérience

7/10


https://github.com/ybertot/one_num_type/
https://github.com/ybertot/one_num_type/blob/main/extensional_replace.v

A prototype implementation

» Required an extension of the E1pi meta-programming
language
» Authorize passing “open terms” as argument to tactics
» An open term is well typed in an extension of the context
» Example, if i does not exist in the context
Vi2 is not well-typed,
but Ai : R, V72 is well typed
» The tactic receives two open terms, which can be viewed has
a rewrite rule
P the context is search for a subcontext where:

» All “open variables” are accounded
» The left-hand side of the rewrite rule occurs

8/10



Building a proof

» Default extensionality: two functions that are equal
everywhere can be substituted for each other

» Axiom functional_extensionality provided by Rocq
» Ad hoc extensionality: compare functions only on a subset

» For integrals: the subset is the interval between the bounds

» For discrete sums with integer bounds: the subset is the
intersection of the integers and the interval between the
bounds

9/10



Future work

v

vvvyyypy

Provide a comfortable interface to add new ad-hoc
extensionality principles

Rely on setoid rewrite, advanced location selection
Handle goals that are not equalities
perform replacement modulo orders

Find links with observational type theory

10/10



